

The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2025

Volume 36, Pages 276-296

ICBAST 2025: International Conference on Basic Sciences and Technology

Neutrosophic $\alpha B^*G\alpha$ Functions in Neutrosophic Topological Spaces

Raja Mohammad Latif

Prince Mohammad Bin Fahd University

Abstract: The notion of a neutrosophic set is generally referred to as the generalization of an intuitionistic fuzzy set. Studying open and closed set variations is crucial in Neutrosophic topology, given the growing significance of Neutrosophic sets in various applications. The origin, nature, and scope of neutrality are explored through the Neutrosophic set. This concept is crucial for research due to its potential applications across various scientific and technological fields. Because the universe inherently contains indeterminacy, the Neutrosophic set provides a valuable framework for study. It is currently being developed to represent data that is uncertain, imprecise, incomplete, or inconsistent. A Neutrosophic set is described using three membership functions: truth, indeterminacy, and falsity. This approach helps to manage uncertainty and leads to more logical outcomes in practical scenarios. Additionally, the Neutrosophic set can identify inconsistencies within data and offer solutions to real-world problems. Neutrosophic functions, based on the Neutrosophic Set Theory, have broad and growing applications due to their ability to model uncertainty, indeterminacy, and inconsistency in data. Here are some of the key areas where neutrosophic functions are applied: Artificial Intelligence & Machine Learning, Data Science and Information Fusion, Decision-Making and Multi-Criteria Decision Analysis (MCDA), Business and Economics, Healthcare and Medical Diagnosis, and Control Systems and Robotics. In 2024, Suthi Keerthana Kumar, Vigneshwaran Mandarasa, Saeid Jafari, and Vidyarani Lakshmanadas described the concepts of Neutrosophic $\alpha B^*G\alpha$ -closed sets, Neutrosophic $\alpha B^*G\alpha$ -open sets, Neutrosophic $\alpha B^*G\alpha$ -border, and Neutrosophic $\alpha B^*G\alpha$ -frontier and discussed their properties in Neutrosophic topological spaces. In this research paper, we introduce the concepts of Neutrosophic $\alpha B^*G\alpha$ -continuous ($Nab^*G\alpha$ -continuous) maps, $Nab^*G\alpha$ -irresolute maps, $Nab^*G\alpha$ -closed maps, $Nab^*G\alpha$ -open maps, strongly $Nab^*G\alpha$ -continuous maps, perfectly $Nab^*G\alpha$ -continuous maps, contra $Nab^*G\alpha$ -continuous maps, and contra $Nab^*G\alpha$ -irresolute maps in Neutrosophic topological spaces. We investigate and obtain several properties and characterizations concerning these mappings in Neutrosophic topological spaces

Keywords: Neutrosophic $\alpha B^*G\alpha$ -continuous map, Neutrosophic $\alpha B^*G\alpha$ -irresolute map, Neutrosophic $\alpha B^*G\alpha$ -closed map, Neutrosophic $\alpha B^*G\alpha$ -open map, Contra neutrosophic $\alpha B^*G\alpha$ -irresolute map

Introduction

Many real-life problems in Business, Finance, Medical Sciences, Engineering, and Social Sciences deal with uncertainties. Smarandache studies neutrosophic set as an approach for solving issues that cover unreliable, indeterminacy, and persistent data. Applications of neutrosophic topology depend upon the properties of neutrosophic closed sets, neutrosophic open sets, neutrosophic interior operator, neutrosophic closure operator, and neutrosophic sets. Neutrosophic topological space, neutrosophic $\alpha B^*G\alpha$ -open set, neutrosophic $\alpha B^*G\alpha$ -closed set, neutrosophic $\alpha B^*G\alpha$ -continuous map, neutrosophic $\alpha B^*G\alpha$ -irresolute map, neutrosophic $\alpha B^*G\alpha$ -closed map, neutrosophic $\alpha B^*G\alpha$ -open map, strongly neutrosophic $\alpha B^*G\alpha$ -continuous map, perfectly neutrosophic $\alpha B^*G\alpha$ -continuous map, contra neutrosophic $\alpha B^*G\alpha$ -continuous map, contra neutrosophic $\alpha B^*G\alpha$ -irresolute map. We investigate and obtain several properties and characterizations concerning these mappings in Neutrosophic topological spaces

- This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

- Selection and peer-review under responsibility of the Organizing Committee of the Conference

2-Preliminaries

Definition 2.1. Let X be a non-empty fixed set. A neutrosophic set (N_{eu} -set) P is an object having the form $P = \{\langle x, \mu_P(x), \sigma_P(x), \gamma_P(x) \rangle : x \in X\}$, where $\mu_P(x)$ -represents the degree of membership, $\sigma_P(x)$ -represents the degree of indeterminacy, and $\gamma_P(x)$ -represents the degree of non-membership.

Definition 2.2. A neutrosophic topology on a non-empty set X is a family T_N of neutrosophic subsets of X satisfying

- (i) $0_N, 1_N \in T_N$.
- (ii) $G \cap H \in T_N$ for every $G, H \in T_N$,
- (iii) $\bigcup_{j \in J} G_j \in T_N$ for every $\{G_j : j \in J\} \subseteq T_N$.

Then the pair (X, T_N) is called a neutrosophic topo N_{eu} -open logical space (N_{eu} -Top-Space). The elements of T_N are called neutrosophic open (N_{eu} -open) sets in X . A N_{eu} -set A is called a neutrosophic closed (N_{eu} -closed) set if and only if its complement A^C is a N_{eu} -open set.

Definition 2.3. Let (X, T_N) be a N_{eu} -Top-Space and A be a N_{eu} -set. Then

- (i) The neutrosophic interior of A , denoted by $N_{eu}Int(A)$ is the union of all N_{eu} -open subsets of X contained in A .
- (ii) The neutrosophic closure of A denoted by $N_{eu}Cl(A)$ is the intersection of all N_{eu} -closed sets containing A .

Definition 2.4. Let A be a N_{eu} -set in a N_{eu} -Top-Space (X, T_N) . Then the set A is called a

- (i) neutrosophic semi-open N_{eu} -open (N_{eu} s-open) set in a N_{eu} -Top-Space X if $A \subseteq N_{eu}Cl[N_{eu}Int(A)]$.
- (ii) neutrosophic semi-closed (N_{eu} s-closed) set in a N_{eu} -Top-Space X if $N_{eu}Int[N_{eu}Cl(A)] \subseteq A$.

Definition 2.5. Let A be a N_{eu} -set in a N_{eu} -Top-Space (X, T_N) . Then the set A is called a neutrosophic α -closed (respectively, neutrosophic α -open) set in N_{eu} -Top-Space X if $N_{eu}Cl[N_{eu}Int(N_{eu}Cl(A))] \subseteq A$.

Definition 2.6. Let A be a N_{eu} -set in a N_{eu} -Top-Space (X, T_N) . Then the set A is called a neutrosophic generalized closed ($N_{eu}G$ -closed) set in N_{eu} -Top-Space (X, T_N) if $N_{eu}Cl(A) \subseteq G$, whenever $A \subseteq G$ and G is N_{eu} -open set in X . $A \subseteq N_{eu}Int[N_{eu}Cl(A)] \cup N_{eu}Cl[N_{eu}Int(A)]$.

Definition 2.7. Let A be a N_{eu} -set in a N_{eu} -Top-Space (X, T_N) . Then the set A is called a neutrosophic generalized semi-closed ($N_{eu}GS$ -closed) set in N_{eu} -Top-Space (X, T_N) if $N_{eu}Cl(A) \subseteq G$, whenever $A \subseteq G$ and G is N_{eu} -open set in X .

Definition 2.8. Let A be a N_{eu} -set in a N_{eu} -Top-Space (X, T_N) . Then the set A is called a Neutrosophic α -generalized closed ($\text{N}_{eu}\alpha g\text{-closed}$) set in N_{eu} -Top-Space (X, T_N) if $\text{N}_{eu}\alpha\text{-}Cl(A) \subseteq G$ whenever $A \subseteq G$ and G is N_{eu} -open set in X .

Definition 2.9. Let A be a N_{eu} -set in a N_{eu} -Top-Space (X, T_N) . Then the set A is called a Neutrosophic α^* -open ($\text{N}_{eu}\alpha^*\text{-open}$) set in N_{eu} -Top-Space (X, T_N) if $A \subseteq \text{N}_{eu}\alpha\text{-}Int[\text{N}_{eu}\text{-}Cl(\text{N}_{eu}\alpha\text{-}Int(A))]$.

Definition 2.10. Let A be a N_{eu} -set in a N_{eu} -Top-Space (X, T_N) . Then the set A is called a Neutrosophic b -closed ($\text{N}_{eu}b\text{-closed}$) set in a N_{eu} -Top-Space (X, T_N) if $[\text{N}_{eu}\text{-}Cl(\text{N}_{eu}\text{-}Int(A))] \cup [\text{N}_{eu}\text{-}Int(\text{N}_{eu}\text{-}Cl(A))] \subseteq A$.

Definition 2.11. Let A be a N_{eu} -set in a N_{eu} -Top-Space (X, T_N) . Then the set A is called (i) a Neutrosophic $g\alpha$ -open ($\text{N}_{eu}g\alpha\text{-open}$) set in a N_{eu} -Top-Space (X, T_N) if $V \subseteq \text{N}_{eu}\alpha\text{-}Int(A)$ whenever $V \subseteq A$ and V is a $\text{N}_{eu}\alpha$ -closed set in (X, T_N) .
(ii) a Neutrosophic $g\alpha$ -closed ($\text{N}_{eu}g\alpha\text{-closed}$) set in a N_{eu} -Top-Space (X, T_N) if $\text{N}_{eu}\alpha\text{-}Cl(A) \subseteq V$ whenever $A \subseteq V$ and V is a $\text{N}_{eu}\alpha$ -open set in (X, T_N) .
(iii) a Neutrosophic $g\alpha$ -open ($\text{N}_{eu}^*g\alpha\text{-open}$) set in a N_{eu} -Top-Space (X, T_N) if $V \subseteq \text{N}_{eu}\text{-}Int(A)$ whenever $V \subseteq A$ and V is a $\text{N}_{eu}g\alpha$ -closed set in (X, T_N) .
(iv) a Neutrosophic $g\alpha$ -closed ($\text{N}_{eu}^*g\alpha\text{-closed}$) set in a N_{eu} -Top-Space (X, T_N) if $\text{N}_{eu}\text{-}Cl(A) \subseteq V$ whenever $A \subseteq V$ and V is a $\text{N}_{eu}g\alpha$ -open set in (X, T_N) .

Definition 2.12. Let A be a N_{eu} -set in a N_{eu} -Top-Space (X, T_N) . Then the set A is called a (i) a Neutrosophic $b^*g\alpha$ -open ($\text{N}_{eu}b^*g\alpha\text{-open}$) set in a N_{eu} -Top-Space (X, T_N) if $V \subseteq \text{N}_{eu}b\text{-}Int(A)$ whenever $V \subseteq A$ and V is a $\text{N}_{eu}^*g\alpha$ -closed set in (X, T_N) .
(ii) a Neutrosophic $b^*g\alpha$ -closed ($\text{N}_{eu}b^*g\alpha\text{-closed}$) set in a N_{eu} -Top-Space (X, T_N) if $\text{N}_{eu}b\text{-}Cl(A) \subseteq V$ whenever $A \subseteq V$ and V is a $\text{N}_{eu}^*g\alpha$ -open set in (X, T_N) .

Definition 2.13. Let A be a N_{eu} -set in a N_{eu} -Top-Space (X, T_N) . Then the set A is called a Neutrosophic $\alpha b^*g\alpha$ -closed ($\text{N}_{eu}\alpha b^*g\alpha\text{-closed}$) set in N_{eu} -Top-Space (X, T_N) if $\text{N}_{eu}\alpha\text{-}Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\text{N}_{eu}b^*g\alpha$ -open set.

Definition 2.14. Let A be a N_{eu} -set in a N_{eu} -Top-Space (X, T_N) . Then the set A is called a Neutrosophic $\alpha b^*g\alpha$ -open ($\text{N}_{eu}\alpha b^*g\alpha\text{-open}$) set in N_{eu} -Top-Space (X, T_N) if its complement A^C is a $\text{N}_{eu}\alpha b^*g\alpha$ -closed set in (X, T_N) .

Theorem 2.15. (i) Every N_{eu} -closed set is $N_{eu}ab^*\alpha$ -closed set.

(ii) Every $N_{eu}ab^*\alpha$ -closed set is $N_{eu}b^*\alpha$ -closed set.

(iii) Every $N_{eu}\alpha$ -closed set is $N_{eu}ab^*\alpha$ -closed set.

Theorem 2.16. Let (X, T_N) be a N_{eu} -Top-Space. Then the union and the intersection of any two $N_{eu}ab^*\alpha$ -closed sets is a $N_{eu}ab^*\alpha$ -closed set in N_{eu} -Top-Space (X, T_N) .

Theorem 2.17. Let (X, T_N) be a N_{eu} -Top-Space. Then the intersection and the union of any two $N_{eu}ab^*\alpha$ -open sets is a $N_{eu}ab^*\alpha$ -open set in N_{eu} -Top-Space (X, T_N) .

Definition 2.18. A N_{eu} -set A in a N_{eu} -Top-Space (X, T_N) is called aneutrosophic $ab^*\alpha$ -interior of A ($N_{eu}ab^*\alpha$ -Int(A)) and neutrosophic $ab^*\alpha$ -closure of A ($N_{eu}ab^*\alpha$ -Cl(A)) are respectively defined by

$$N_{eu}ab^*\alpha\text{-Int}(A) = \bigcup \{G : G \in N_{eu}ab^*\alpha\text{-Int}(X, T_{Neu}) \text{ and } G \subseteq A\} \text{ and}$$

$$N_{eu}ab^*\alpha\text{-Int}(A) = \bigcup \{G : G \in N_{eu}ab^*\alpha\text{-Int}(X, T_{Neu}) \text{ and } G \subseteq A\}.$$

Remark 2.19. Let A be a subset of a N_{eu} -Top-Space (X, T_N) . Then $N_{eu}ab^*\alpha$ -Int(A) ($N_{eu}ab^*\alpha$ -Cl(A)) is $N_{eu}ab^*\alpha$ -open ($N_{eu}ab^*\alpha$ -closed) set in (X, T_N) . The complement of $N_{eu}ab^*\alpha$ -Int(A) is $N_{eu}ab^*\alpha$ -Cl(A).

Definition 2.20. Let A be a N_{eu} -subset of a N_{eu} -Top-Space (X, T_N) . Then the neutrosophic $ab^*\alpha$ -frontier of a N_{eu} -subset A of X is denoted by $N_{eu}ab^*\alpha$ -Fr(A) and is defined by $N_{eu}ab^*\alpha$ -Fr(A) = $[N_{eu}ab^*\alpha\text{-Int}(A)] \cap [N_{eu}ab^*\alpha\text{-Cl}(A^C)]$.

Theorem 2.21. For N_{eu} -sets A and B in a N_{eu} -Top-Space (X, T_N) , the following statements are true:

(i) $N_{eu}ab^*\alpha$ -Int(A) $\subseteq A \subseteq N_{eu}ab^*\alpha$ -Cl(A).

(ii) A is $N_{eu}ab^*\alpha$ -open set in X if and only if $N_{eu}ab^*\alpha$ -Int(A) = A .

(iii) A is $N_{eu}ab^*\alpha$ -closed set in X if and only if $N_{eu}ab^*\alpha$ -Cl(A) = A .

(iv) $N_{eu}ab^*\alpha$ -Int [$N_{eu}ab^*\alpha$ -Int(A)] = $N_{eu}gs\alpha^*$ -Int(A).

(v) $N_{eu}ab^*\alpha$ -Cl [$N_{eu}ab^*\alpha$ -Cl(A)] = $N_{eu}ab^*\alpha$ -Cl(A).

(vi) If $A \subseteq B$, then $N_{eu}ab^*\alpha$ -Int(A) $\subseteq N_{eu}ab^*\alpha$ -Int(B).

(vii) $[N_{eu}ab^*\alpha$ -Int(A)] C = $N_{eu}ab^*\alpha$ -Cl(A^C).

(viii) $[N_{eu}ab^*\alpha$ -Cl(A)] C = $N_{eu}ab^*\alpha$ -Int(A^C).

(ix) $N_{eu}ab^*\alpha$ -Int($A \cap B$) = $[N_{eu}ab^*\alpha$ -Int(A)] \cap $[N_{eu}ab^*\alpha$ -Int(B)].

(x) $N_{eu}ab^*\alpha$ -Cl($A \cup B$) = $[N_{eu}ab^*\alpha$ -Cl(A)] \cup $[N_{eu}ab^*\alpha$ -Cl(B)].

(xi) $[N_{eu}ab^*\alpha$ -Int(A)] \cup $[N_{eu}ab^*\alpha$ -Int(B)] $\subseteq N_{eu}ab^*\alpha$ -Int($A \cup B$).

$$(xii) \quad N_{eu}ab^*\alpha -Cl(A \cap B) \subseteq [N_{eu}ab^*\alpha -Cl(A)] \cap [N_{eu}ab^*\alpha -Cl(B)].$$

Definition 2.22. Let $f : (X, T_N) \rightarrow (Y, \sigma_N)$ be a mapping. Then f is called a neutrosophic continuous (N_{eu} -continuous) mapping if $f^{-1}(V)$ is a N_{eu} -open set in X for every N_{eu} -open set V in Y .

Theorem 2.23. Let $f : (X, T_N) \rightarrow (Y, \sigma_N)$ be a mapping. Then f is called a N_{eu} -continuous mapping if $f^{-1}(V)$ is a N_{eu} -closed set in X for every N_{eu} -closed set V in Y .

3 Neutrosophic $ab^*\alpha$ -Continuous Mappings

In this section, we introduce the concepts of neutrosophic $ab^*\alpha$ -continuous ($N_{eu}ab^*\alpha$ -continuous) mappings in N_{eu} -Top-Spaces. Also, we study some of the main results regarding $N_{eu}ab^*\alpha$ -continuous depending on $N_{eu}ab^*\alpha$ -open sets.

Definition 3.1. Let $f : (X, T_N) \rightarrow (Y, \sigma_N)$ be a mapping. Then f is called a $N_{eu}ab^*\alpha$ -continuous mapping if $f^{-1}(V)$ is a $N_{eu}ab^*\alpha$ -open set in X for every N_{eu} -open set V in Y .

Theorem 3.2. Every N_{eu} -continuous mapping is $N_{eu}ab^*\alpha$ -continuous mapping.

Proof. Let $f : (X, T_N) \rightarrow (Y, \sigma_N)$ be N_{eu} -continuous mapping. Let V be a N_{eu} -open set in (Y, σ_N) . Then $f^{-1}(V)$ is N_{eu} -open set in (X, T_N) . Since every N_{eu} -open set is $N_{eu}ab^*\alpha$ -open. $f^{-1}(V)$ is $N_{eu}ab^*\alpha$ -open set in (X, T_N) . Hence f is $N_{eu}ab^*\alpha$ -continuous mapping.

Theorem 3.3. Let (X, T_N) , (Y, σ_N) and (Z, η_N) be N_{eu} -Top-Spaces. If $f : (X, T_N) \rightarrow (Y, \sigma_N)$ is a $N_{eu}ab^*\alpha$ -continuous mapping and $g : (Y, \sigma_N) \rightarrow (Z, \eta_N)$ is N_{eu} -continuous mapping, then $gof : (X, T_N) \rightarrow (Z, \eta_N)$ is a $N_{eu}ab^*\alpha$ -continuous mapping.

Proof. Let G be a N_{eu} -open set in Z . Since $g : (Y, \sigma_N) \rightarrow (Z, \eta_N)$ is N_{eu} -continuous, $f^{-1}(G)$ is N_{eu} -open in Y . Since f is a $N_{eu}ab^*\alpha$ -continuous mapping, $f^{-1}[f^{-1}(G)]$ is $N_{eu}ab^*\alpha$ -open in X . But $f^{-1}[g^{-1}(G)] = (gof)^{-1}(G)$.

Then $(gof)^{-1}(G)$ is $N_{eu}ab^*\alpha$ -open set in X . Hence, gof is a $N_{eu}ab^*\alpha$ -continuous mapping.

Theorem 3.4. Let (X, T_N) and (Y, σ_N) be two N_{eu} -Top-Spaces. Then prove that $f : (X, T_N) \rightarrow (Y, \sigma_N)$ is $N_{eu}ab^*\alpha$ -continuous if and only if $f^{-1}(B)$ is $N_{eu}ab^*\alpha$ -closed set in X for every N_{eu} -closed set B in Y .

Proof. Let B be a N_{eu} -closed set in Y . Then B^C is N_{eu} -open set in Y . Since f is $N_{eu}ab^*\alpha$ -continuous. Therefore $f^{-1}(B^C)$ is a $N_{eu}ab^*\alpha$ -open set in X . Since $f^{-1}(B^C) = [f^{-1}(B)]^C$, $f^{-1}(B)$ is $N_{eu}ab^*\alpha$ -closed set in X .

Conversely, Let B be a N_{eu} -open set in Y . Then B^C is N_{eu} -closed set in Y . By assumption $f^{-1}(B^C)$ is $N_{eu}ab^*\alpha$ -closed set in X . Since $f^{-1}(B^C) = [f^{-1}(B)]^C$, $f^{-1}(B)$ is $N_{eu}ab^*\alpha$ -open set in X . Hence f is $N_{eu}ab^*\alpha$ -continuous.

Theorem 3.5. Let (X, T_N) and (Y, σ_N) be two N_{eu} -Top-Spaces and $f: X \rightarrow Y$ be a mapping. Then f is a $N_{eu}ab^*\alpha$ -continuous mapping if and only if $f(N_{eu}ab^*\alpha - Cl(A)) \subseteq N_{eu}ab^*\alpha - Cl(f(A))$ for every N_{eu} -set A in X .

Proof. Let A be a N_{eu} -set in X and f be a $N_{eu}ab^*\alpha$ -continuous mapping. Then evidently $f(A) \subseteq N_{eu}ab^*\alpha - Cl[f(A)]$. Now, $A \subseteq f^{-1}[f(A)] \subseteq f^{-1}[N_{eu}ab^*\alpha - Cl(f(A))]$ and $N_{eu}ab^*\alpha - Cl(f(A)) \subseteq N_{eu}ab^*\alpha - Cl[f^{-1}(N_{eu}ab^*\alpha - Cl(f(A)))]$. Since f is a $N_{eu}ab^*\alpha$ -continuous mapping and $N_{eu}ab^*\alpha - Cl[f(A)]$ is a $N_{eu}ab^*\alpha$ -closed set. Thus $N_{eu}ab^*\alpha - Cl[f^{-1}(N_{eu}ab^*\alpha - Cl(f(A)))] = f^{-1}[N_{eu}ab^*\alpha - Cl(f(A))]$. Hence, $f[N_{eu}ab^*\alpha - Cl(A)] \subseteq N_{eu}ab^*\alpha - Cl[f(A)]$.

Conversely, let $f[N_{eu}ab^*\alpha - Cl(A)] \subseteq N_{eu}ab^*\alpha - Cl[f(A)]$, for each N_{eu} -set A in X . Let F be a N_{eu} -closed set in Y . Then $N_{eu}ab^*\alpha - Cl[f(f^{-1}(F))] \subseteq N_{eu}ab^*\alpha - Cl(F) = F$. By assumption, $f[N_{eu}ab^*\alpha - Cl(f^{-1}(F))] \subseteq N_{eu}ab^*\alpha - Cl[f(f^{-1}(F))] \subseteq F$ and hence $N_{eu}ab^*\alpha - Cl[f^{-1}(F)] \subseteq f^{-1}(F)$. Since $f^{-1}(F) \subseteq N_{eu}ab^*\alpha - Cl[f^{-1}(F)]$, $N_{eu}ab^*\alpha - Cl[f^{-1}(F)] = f^{-1}(F)$. This implies that $f^{-1}(F)$ is a $N_{eu}ab^*\alpha$ -closed set in X . Thus by Theorem 3.4, f is a $N_{eu}ab^*\alpha$ -continuous mapping.

Theorem 3.6. Let (X, T_N) and (Y, σ_N) be two N_{eu} -Top-Spaces and $f: X \rightarrow Y$ be a mapping. Then f is a $N_{eu}ab^*\alpha$ -continuous mapping if and only if $N_{eu}ab^*\alpha - Cl[f^{-1}(B)] \subseteq f^{-1}[N_{eu}ab^*\alpha - Cl(B)]$ for every N_{eu} -set B in Y .

Proof. Let B be any N_{eu} -set in Y and f be a $N_{eu}ab^*\alpha$ -continuous mapping. Clearly $f^{-1}(B) \subseteq f^{-1}[N_{eu}ab^*\alpha - Cl(B)]$. Then, $N_{eu}ab^*\alpha - Cl[f^{-1}(B)] \subseteq N_{eu}ab^*\alpha - Cl[f^{-1}(N_{eu}ab^*\alpha - Cl(B))]$. Since $N_{eu}ab^*\alpha - Cl(B)$ is $N_{eu}ab^*\alpha$ -closed set in Y . So by Theorem 3.4, $f^{-1}[N_{eu}ab^*\alpha - Cl(B)]$ is a $N_{eu}ab^*\alpha$ -closed set in X . Thus,

$$\begin{aligned} N_{eu}\alpha b^*g\alpha -Cl[f^{-1}(B)] &\subseteq N_{eu}\alpha b^*g\alpha -Cl[f^{-1}(N_{eu}\alpha b^*g\alpha -Cl(B))] = \\ f^{-1}[N_{eu}\alpha b^*g\alpha -Cl(B)]. \end{aligned}$$

Conversely, $N_{eu}\alpha b^*g\alpha -Cl[f^{-1}(B)] \subseteq f^{-1}[N_{eu}\alpha b^*g\alpha -Cl(B)]$ for all N_{eu} -sets N_{eu} -set B in Y . Let F be a N_{eu} -closed set in Y . Since every N_{eu} -closed set is $N_{eu}\alpha b^*g\alpha$ -closed set, $N_{eu}\alpha b^*g\alpha -Cl[f^{-1}(F)] \subseteq f^{-1}[N_{eu}\alpha b^*g\alpha -Cl(F)] = f^{-1}(F)$. This implies that $f^{-1}(F)$ is a $N_{eu}\alpha b^*g\alpha$ -closed set in X . Thus by Theorem 3.4, f is a $N_{eu}\alpha b^*g\alpha$ -continuous mapping.

Theorem 3.7. Let (X, T_N) and (Y, σ_N) be two N_{eu} -Top-Spaces and $f: X \rightarrow Y$ be a bijective mapping. Then f is $N_{eu}\alpha b^*g\alpha$ -continuous if and only if $N_{eu}\alpha b^*g\alpha -Int[f(A)] \subseteq f[N_{eu}\alpha b^*g\alpha -Int(A)]$ for every N_{eu} -set A in X .

Proof. Let A be any N_{eu} -set in X and f be a bijective and $N_{eu}\alpha b^*g\alpha$ -continuous mapping. Let $f(A) = B$. Clearly $f^{-1}[N_{eu}\alpha b^*g\alpha -Int(B)] \subseteq f^{-1}(B)$. Since f is an injective mapping, $f^{-1}(B) = A$, so that $f^{-1}[N_{eu}\alpha b^*g\alpha -Int(B)] \subseteq A$. Therefore, $N_{eu}\alpha b^*g\alpha -Int[f^{-1}(N_{eu}\alpha b^*g\alpha -Int(B))] \subseteq N_{eu}\alpha b^*g\alpha -Int(A)$. Since f is $N_{eu}\alpha b^*g\alpha$ -continuous, $f^{-1}[N_{eu}\alpha b^*g\alpha -Int(B)]$ is $N_{eu}\alpha b^*g\alpha$ -open set in X and $f^{-1}[N_{eu}\alpha b^*g\alpha -Int(B)] \subseteq N_{eu}\alpha b^*g\alpha -Int(A)$, $f[f^{-1}(N_{eu}\alpha b^*g\alpha -Int(B))] \subseteq f[N_{eu}\alpha b^*g\alpha -Int(A)]$. Therefore $N_{eu}\alpha b^*g\alpha -Int[f(A)] \subseteq f[N_{eu}\alpha b^*g\alpha -Int(A)]$.

Conversely, $N_{eu}\alpha b^*g\alpha -Int[f(A)] \subseteq f[N_{eu}\alpha b^*g\alpha -Int(A)]$ for every N_{eu} -set A in X . Let V be a N_{eu} -open set in Y . Then V is $N_{eu}\alpha b^*g\alpha$ -open set in Y . Since f is surjective and so $V = N_{eu}\alpha b^*g\alpha -Int(V) = N_{eu}\alpha b^*g\alpha -Int[f(f^{-1}(V))] \subseteq f[N_{eu}\alpha b^*g\alpha -Int(f^{-1}(V))]$. It follows that $f^{-1}(V) \subseteq N_{eu}\alpha b^*g\alpha -Int[f^{-1}(V)]$. Therefore $f^{-1}(V)$ is $N_{eu}\alpha b^*g\alpha$ -open set in X . Hence f is a $N_{eu}\alpha b^*g\alpha$ -continuous mapping.

Theorem 3.8. Let (X, T_N) and (Y, σ_N) be two N_{eu} -Top-Spaces and $f: X \rightarrow Y$ be a mapping. Then f is a $N_{eu}\alpha b^*g\alpha$ -continuous mapping if and only if $f^{-1}[N_{eu}\alpha b^*g\alpha -Int(B)] \subseteq N_{eu}\alpha b^*g\alpha -Int[f^{-1}(B)]$ for every N_{eu} -set B in Y .

Proof. Let B be any N_{eu} -set in Y and f be a $N_{eu}\alpha b^*g\alpha$ -continuous mapping. Clearly $f^{-1}[N_{eu}\alpha b^*g\alpha -Int(B)] \subseteq f^{-1}(B)$ implies $N_{eu}\alpha b^*g\alpha -Int[f^{-1}(N_{eu}\alpha b^*g\alpha -Int(B))] \subseteq N_{eu}\alpha b^*g\alpha -Int[f^{-1}(B)]$. Since $N_{eu}\alpha b^*g\alpha -Int(B)$ is $N_{eu}\alpha b^*g\alpha$ -open set in Y and f is $N_{eu}\alpha b^*g\alpha$ -continuous, $f^{-1}[N_{eu}\alpha b^*g\alpha -Int(B)]$ is $N_{eu}\alpha b^*g\alpha$ -open set in X . Therefore $N_{eu}\alpha b^*g\alpha -Int[f^{-1}(N_{eu}\alpha b^*g\alpha -Int(B))] \subseteq f^{-1}[N_{eu}\alpha b^*g\alpha -Int(B)] \subseteq N_{eu}\alpha b^*g\alpha -Int[f^{-1}(B)]$.

Conversely, $f^{-1}[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}(B)] \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}[f^{-1}(B)]$ for every N_{eu} -set B in Y . Let G be any N_{eu} -open set in Y . Then $f^{-1}(G) = f^{-1}[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}(G)] \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}[f^{-1}(G)]$ and therefore $f^{-1}(G) = \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}[f^{-1}(G)]$. This implies that $f^{-1}(G)$ is $\text{N}_{eu}\text{ab}^*\text{g}\alpha$ -open set in X . Hence f is a $\text{N}_{eu}\text{ab}^*\text{g}\alpha$ -continuous mapping.

Theorem 3.9. Let (X, T_N) and (Y, σ_N) be two N_{eu} -Top-Spaces and $f: X \rightarrow Y$ be a bijective mapping. Then f is a $\text{N}_{eu}\text{ab}^*\text{g}\alpha$ -continuous mapping if and only if $f[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}(A)] \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}[f(A)]$ for every N_{eu} -set A in X .

Proof. Let f be a bijective and $\text{N}_{eu}\text{ab}^*\text{g}\alpha$ -continuous mapping. Let A be a N_{eu} -set in X . By definition, $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}(A) = \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(A) \cap \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(A^C)$. By Theorem 3.7, $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}[f(A)] \subseteq f[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}(A)]$ and from Theorem 3.5, $f[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(A)] \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f(A)]$, $f[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}(A)] = f[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(A)] \cap f[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(A^C)] \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f(A)] \cap \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f(A)]^C = \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}[f(A)]$. Conversely, $f[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}(A)] \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}[f(A)]$ for every N_{eu} -set A in X . Then $f[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(A)] = f[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}(A)] \cup f[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}(A)] \subseteq f(A) \cup \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}[f(A)] \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f(A)]$. By Theorem 3.5, f is a $\text{N}_{eu}\text{ab}^*\text{g}\alpha$ -continuous mapping.

Theorem 3.10. Let (X, T_N) and (Y, σ_N) be two N_{eu} -Top-Spaces and $f: X \rightarrow Y$ be a bijective mapping. Then f is a $\text{N}_{eu}\text{ab}^*\text{g}\alpha$ -continuous mapping if and only if $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}[f^{-1}(B)] \subseteq f^{-1}[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}(B)]$ for every N_{eu} -set B in Y .

Proof. Let f be a bijective and $\text{N}_{eu}\text{ab}^*\text{g}\alpha$ -continuous mapping. Let B be a N_{eu} -set in Y . By Theorem 3.6, $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f^{-1}(B)] \subseteq f^{-1}[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(B)]$. Therefore we obtain $f^{-1}[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}(B)] = f^{-1}[(\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(B)) \cap \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(B^C)] = f^{-1}[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(B)] \cap f^{-1}[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(B^C)] \supseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f^{-1}(B)] \cap \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f^{-1}(B^C)] = \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f^{-1}(B)] \cap \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[(f^{-1}(B))^C] = \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}[f^{-1}(B)]$. Therefore $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}[f^{-1}(B)] \subseteq f^{-1}[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Fr}(B)]$.

Conversely since $N_{eu}\alpha b^*\alpha\alpha -Fr[f^{-1}(B)] \subseteq f^{-1}[N_{eu}\alpha b^*\alpha\alpha -Fr(B)]$ for every N_{eu} -set B in Y . This implies that $N_{eu}\alpha b^*\alpha\alpha -Cl[f^{-1}(B)] \subseteq f^{-1}[N_{eu}\alpha b^*\alpha\alpha -Cl(B)]$. By Theorem 3.6, f is a $N_{eu}\alpha b^*\alpha\alpha$ -continuous mapping.

Definition 3.11. Let $x_{(r,t,s)}$ be a N_{eu} -point of a N_{eu} -Top-Space (X, T_N) . A N_{eu} -set A of X is called neutrosophic neighbourhood (N_{eu} -neighbourhood) of $x_{(r,t,s)}$ if there exists a N_{eu} -open set B such that $x_{(r,t,s)} \in B \subseteq A$.

Theorem 3.12. Let f be a mapping from a N_{eu} -Top-Space (X, T_N) to a N_{eu} -Top-Space (Y, σ_N) . Then the following assertions are equivalent.

- (i) f is $N_{eu}\alpha b^*\alpha\alpha$ -continuous.
- (ii) For each N_{eu} -point $x_{(r,t,s)} \in X$ and every N_{eu} -neighbourhood A of $f(x_{(r,t,s)})$, there exists a $N_{eu}\alpha b^*\alpha\alpha$ -open set B such that $x_{(r,t,s)} \in B \subseteq f^{-1}(A)$.
- (iii) For each N_{eu} -point $x_{(r,t,s)} \in X$ and every N_{eu} -neighbourhood A of $f(x_{(r,t,s)})$, there exists a $N_{eu}\alpha b^*\alpha\alpha$ -open set B in X such that $x_{(r,t,s)} \in B$ and $f(B) \subseteq A$.

Proof. (i) \Rightarrow (ii): Let $x_{(r,t,s)} \in X$ be a N_{eu} -point in X and let A be a N_{eu} -neighbourhood of $f(x_{(r,t,s)})$. Then there exists a N_{eu} -open set B in Y such that $f(x_{(r,t,s)}) \in B \subseteq A$. Since f is $N_{eu}\alpha b^*\alpha\alpha$ -continuous, we know that $f^{-1}(B)$ is a $N_{eu}\alpha b^*\alpha\alpha$ -open set in X and $x_{(r,t,s)} \in f^{-1}(f(x_{(r,t,s)})) \subseteq f^{-1}(B) \subseteq f^{-1}(A)$. This implies (ii) is true.

(ii) \Rightarrow (iii): Let $x_{(r,t,s)}$ be a N_{eu} -point in X and let A be a N_{eu} -neighbourhood of $f(x_{(r,t,s)})$. The condition (ii) implies that there exists a $N_{eu}\alpha b^*\alpha\alpha$ -open set B in X such that $x_{(r,t,s)} \in B \subseteq f^{-1}(A)$. Thus $x_{(r,t,s)} \in B$ and $f(B) \subseteq f[f^{-1}(A)] \subseteq A$. Hence (iii) is true.

(iii) \Rightarrow (i): Let B be a N_{eu} -open set in Y and let $x_{(r,t,s)} \in f^{-1}(B)$. Since B is N_{eu} -open set, $f(x_{(r,t,s)}) \in B$, and so B is N_{eu} -neighbourhood of $f(x_{(r,t,s)})$. It follows from (iii) that there exists a $N_{eu}\alpha b^*\alpha\alpha$ -open set A in X such that $x_{(r,t,s)} \in A$ and $f(A) \subseteq B$ so that $x_{(r,t,s)} \in A \subseteq f^{-1}[f(A)] \subseteq f^{-1}(B)$. This implies by definition that $f^{-1}(B)$ is a $N_{eu}\alpha b^*\alpha\alpha$ -open set in X . Therefore, f is a $N_{eu}\alpha b^*\alpha\alpha$ -continuous mapping.

4 Neutrosophic $\alpha b^*\alpha\alpha$ -Irresolute Mappings

In this section, we introduce the concept of neutrosophic $N_{eu}\alpha b^*\alpha\alpha$ -irresolute ($N_{eu}\alpha b^*\alpha\alpha$ -irresolute) mappings in N_{eu} -Top-Spaces. Also, we discuss the relationship of $N_{eu}\alpha b^*\alpha\alpha$ -irresolute with $N_{eu}\alpha b^*\alpha\alpha$ -continuous mappings.

Definition 4.1. Let (X, T_N) and (Y, σ_N) be two N_{eu} -Top-Spaces. A mapping $f: X \rightarrow Y$ is called $N_{eu}\alpha b^* \alpha$ -irresolute if the inverse image of every $N_{eu}\alpha b^* \alpha$ -open set in Y is $N_{eu}\alpha b^* \alpha$ -open in X .

Theorem 4.2. Let (X, T_N) and (Y, σ_N) be two N_{eu} -Top-Spaces. A mapping $f: X \rightarrow Y$ is called $N_{eu}\alpha b^* \alpha$ -irresolute if the inverse image of every $N_{eu}\alpha b^* \alpha$ -closed set in Y is $N_{eu}\alpha b^* \alpha$ -closed in X .

Proof. Let A be any $N_{eu}\alpha b^* \alpha$ -closed set in Y . Then A^C is $N_{eu}\alpha b^* \alpha$ -open set in Y . Since f is $N_{eu}\alpha b^* \alpha$ -irresolute, $f^{-1}(A^C)$ is $N_{eu}\alpha b^* \alpha$ -open set in X and $f^{-1}(A^C) = [f^{-1}(A)]^C$ which implies that $f^{-1}(A)$ is $N_{eu}\alpha b^* \alpha$ -closed set in X .

Conversely, Let B be any $N_{eu}\alpha b^* \alpha$ -open set in Y . Then B^C is $N_{eu}\alpha b^* \alpha$ -closed set in Y . Thus $f^{-1}(B^C)$ is $N_{eu}\alpha b^* \alpha$ -closed set in X and $f^{-1}(B^C) = [f^{-1}(B)]^C$ which implies that $f^{-1}(B)$ is $N_{eu}\alpha b^* \alpha$ -open set in X . Hence $f: X \rightarrow Y$ is $N_{eu}\alpha b^* \alpha$ -irresolute.

Theorem 4.3. Every $N_{eu}\alpha b^* \alpha$ -irresolute mapping is $N_{eu}\alpha b^* \alpha$ -continuous.

Proof. Let V be a N_{eu} -open set in Y . Since every N_{eu} -open set is $N_{eu}\alpha b^* \alpha$ -open, V is $N_{eu}\alpha b^* \alpha$ -open. Since f is $N_{eu}\alpha b^* \alpha$ -irresolute, $f^{-1}(V)$ is $N_{eu}\alpha b^* \alpha$ -open set in X . Therefore f is $N_{eu}\alpha b^* \alpha$ -continuous.

Theorem 4.4. Let $f: (X, T_N) \rightarrow (Y, \sigma_N)$ be a mapping. Then the following assertions are equivalent:

- (i) f is $N_{eu}\alpha b^* \alpha$ -irresolute.
- (ii) $N_{eu}\alpha b^* \alpha$ -Cl $[f^{-1}(B)] \subseteq f^{-1}[N_{eu}\alpha b^* \alpha$ -Cl $(B)]$ for every N_{eu} -set B of Y .
- (iii) $f[N_{eu}\alpha b^* \alpha$ -Cl $(A)] \subseteq N_{eu}\alpha b^* \alpha$ -Cl $[f(A)]$ for every N_{eu} -set A of X .
- (iv) $f^{-1}[N_{eu}\alpha b^* \alpha$ -Int $(B)] \subseteq N_{eu}\alpha b^* \alpha$ -Int $[f^{-1}(B)]$ for every N_{eu} -set B of Y .

Proof. (i) \Rightarrow (ii): Let B be any N_{eu} -set in Y . Then $N_{eu}\alpha b^* \alpha$ -Cl (B) is $N_{eu}\alpha b^* \alpha$ -closed set in Y . Since f is $N_{eu}\alpha b^* \alpha$ -irresolute, $f^{-1}[N_{eu}\alpha b^* \alpha$ -Cl $(B)]$ is $N_{eu}\alpha b^* \alpha$ -closed set in X . Then $N_{eu}\alpha b^* \alpha$ -Cl $[f^{-1}(N_{eu}\alpha b^* \alpha$ -Cl $(B))]$ = $f^{-1}[N_{eu}\alpha b^* \alpha$ -Cl $(B)]$. Clearly it follows that $N_{eu}\alpha b^* \alpha$ -Cl $[f^{-1}(B)] \subseteq N_{eu}\alpha b^* \alpha$ -Cl $[f^{-1}(N_{eu}\alpha b^* \alpha$ -Cl $(B))]$ = $f^{-1}[N_{eu}\alpha b^* \alpha$ -Cl $(B)]$. This proves (ii).

(ii) \Rightarrow (iii): Let A be any N_{eu} -set in X . Then $f(A) \subseteq Y$. By (ii), $N_{eu}\alpha b^* \alpha$ -Cl $[f^{-1}(f(A))]$ = $f^{-1}[N_{eu}\alpha b^* \alpha$ -Cl $(f(A))]$...(*). Now we observe that $A \subseteq f^{-1}(f(A))$ implies that $N_{eu}\alpha b^* \alpha$ -Cl $(A) \subseteq N_{eu}\alpha b^* \alpha$ -Cl $[f^{-1}(f(A))]$...(**). Then (*) and (**) implies that $N_{eu}\alpha b^* \alpha$ -Cl $(A) \subseteq f^{-1}[N_{eu}\alpha b^* \alpha$ -Cl $(f(A))]$ which implies that

$f\left[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(A)\right] \subseteq f\left(f^{-1}\left[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(f(A))\right]\right) \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f(A)]$. Thus, $f\left[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(A)\right] \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f(A)]$. Hence, (ii) \Rightarrow (iii) is proved.

(iii) \Rightarrow (i): Let F be any $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-closed}$ set in Y . Then $f^{-1}(F) = f^{-1}\left[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(F)\right]$. By (iii), $f\left[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(f^{-1}(F))\right] \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f(f^{-1}(F))] \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}(F) = F$. Then that implies $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f^{-1}(F)] \subseteq f^{-1}(F)$. But $f^{-1}(F) \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f^{-1}(F)]$, $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Cl}[f^{-1}(F)] = f^{-1}(F)$ and so $f^{-1}(F)$ is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-closed}$ set in X . Therefore f is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-irresolute}$.

(i) \Rightarrow (iv): Let B be any $\text{N}_{eu}\text{-set}$ in Y . We know that $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}(B)$ is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-open}$ set in Y . Since f is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-irresolute}$, $f^{-1}\left[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}(B)\right]$ is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-open}$ set in X . Then $f^{-1}\left[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}(B)\right] = \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}[f^{-1}(\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}(B))] \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}[f^{-1}(B)]$.

(iv) \Rightarrow (i): Let V be any $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-open}$ set in Y . Then by (iv), $f^{-1}(V) = f^{-1}\left[\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}(V)\right] \subseteq \text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}[f^{-1}(V)]$. But, we have $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}[f^{-1}(V)] \subseteq f^{-1}(V)$, $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-Int}[f^{-1}(V)] = f^{-1}(V)$ and hence $f^{-1}(V)$ is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-open}$. Thus f is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-irresolute}$.

Theorem 4.5. If $f : (X, \text{T}_N) \rightarrow (Y, \sigma_N)$ and $g : (Y, \sigma_N) \rightarrow (Z, \eta_N)$ are $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-irresolute}$, then their composition $gof : (X, \text{T}_N) \rightarrow (Z, \eta_N)$ is also $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-irresolute}$.

Proof. Let V be a $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-open}$ set in Z . Since g is a $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-irresolute}$ mapping, $g^{-1}(V)$ is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-open}$ in Y . Since f is a $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-irresolute}$ mapping, $f^{-1}[g^{-1}(V)] = (gof)^{-1}(V)$ is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-open}$ in X . Therefore gof is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-irresolute}$.

Theorem 4.6. If $f : (X, \text{T}_N) \rightarrow (Y, \sigma_N)$ is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-irresolute}$ and $g : (Y, \sigma_N) \rightarrow (Z, \eta_N)$ is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-continuous}$, then their composition $gof : (X, \text{T}_N) \rightarrow (Z, \eta_N)$ is also $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-continuous}$.

Proof. Let V be a $\text{N}_{eu}\text{-open}$ set in Z . Since g is a $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-continuous}$ mapping, $g^{-1}(V)$ is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-open}$ set in Y . Since f is a $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-irresolute}$ mapping, $f^{-1}[g^{-1}(V)] = (gof)^{-1}(V)$ is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-open}$ in X . Therefore gof is $\text{N}_{eu}\text{ab}^*\text{g}\alpha\text{-continuous}$.

5 Neutrosophic $\text{ab}^*\text{g}\alpha\text{-Closed Mappings and Neutrosophic } \text{ab}^*\text{g}\alpha\text{-Open Mappings}$

In this section, we introduce neutrosophic $\alpha b^* g\alpha$ - closed ($N_{eu} \alpha b^* g\alpha$ -closed) mappings and neutrosophic $\alpha b^* g\alpha$ - open ($N_{eu} \alpha b^* g\alpha$ -open) mappings in N_{eu} -Top -Spaces and obtain certain characterizations of these classes of mappings.

Definition 5.1. Let (X, T_N) and (Y, σ_N) be two N_{eu} -Top -Spaces. A function $f : (X, T_N) \rightarrow (Y, \sigma_N)$ is said to be $N_{eu} \alpha b^* g\alpha$ -closed if the image of each N_{eu} -closed set in X is $N_{eu} \alpha b^* g\alpha$ -closed in Y .

Definition 5.2. Let (X, T_N) and (Y, σ_N) be two N_{eu} -Top -Spaces. A function $f : (X, T_N) \rightarrow (Y, \sigma_N)$ is said to be $N_{eu} \alpha b^* g\alpha$ -open if the image of each N_{eu} -open set in X is $N_{eu} \alpha b^* g\alpha$ -closed in Y .

Theorem 5.3. A function $f : (X, T_N) \rightarrow (Y, \sigma_N)$ is said to be $N_{eu} \alpha b^* g\alpha$ -closed if and only if $N_{eu} \alpha b^* g\alpha -Cl[f(A)] \subseteq f[N_{eu} Cl(A)]$ for every N_{eu} -set A of X .

Proof. Suppose $f : (X, T_N) \rightarrow (Y, \sigma_N)$ is a $N_{eu} \alpha b^* g\alpha$ -closed function and A is any N_{eu} -set in X . Then $N_{eu} Cl(A)$ is a $N_{eu} \alpha b^* g\alpha$ -closed set in X . Since f is $N_{eu} \alpha b^* g\alpha$ -closed, $f[N_{eu} Cl(A)]$ is a $N_{eu} \alpha b^* g\alpha$ -closed set in Y . Thus $N_{eu} \alpha b^* g\alpha -Cl[f(N_{eu} Cl(A))] = f[N_{eu} Cl(A)]$. Therefore $N_{eu} \alpha b^* g\alpha -Cl[f(A)] \subseteq N_{eu} \alpha b^* g\alpha -Cl[f(N_{eu} Cl(A))] = f(N_{eu} Cl(A))$. Hence $N_{eu} \alpha b^* g\alpha -Cl[f(A)] \subseteq f(N_{eu} Cl(A))$.

Conversely, let A be a N_{eu} -closed set in X . Then $N_{eu} Cl(A) = A$ and so $f(A) = f[N_{eu} Cl(A)]$. By our assumption $N_{eu} \alpha b^* g\alpha -Cl[f(A)] \subseteq f(A)$. But $f(A) \subseteq N_{eu} \alpha b^* g\alpha -Cl[f(A)]$. Hence $N_{eu} \alpha b^* g\alpha -Cl[f(A)] = f(A)$ and therefore $f(A)$ is $N_{eu} \alpha b^* g\alpha$ -closed set in Y . Thus f is a $N_{eu} \alpha b^* g\alpha$ -closed mapping.

Theorem 5.4. A mapping $f : (X, T_N) \rightarrow (Y, \sigma_N)$ is $N_{eu} \alpha b^* g\alpha$ -closed if and only if for each N_{eu} -set W of Y and for each N_{eu} -open set U of X containing $f^{-1}(W)$ there exists a $N_{eu} \alpha b^* g\alpha$ -open set V of Y such that $W \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof. Suppose f is a $N_{eu} \alpha b^* g\alpha$ -closed mapping. Let W be any N_{eu} -set in Y and U be a $N_{eu} \alpha b^* g\alpha$ -open set of X such that $f^{-1}(W) \subseteq U$. Then $V = [f(U^c)]^c$ is $N_{eu} \alpha b^* g\alpha$ -open set containing W such that $f^{-1}(V) \subseteq U$. Conversely, let W be a N_{eu} -closed set of X . Then $f^{-1}[(f(W))^c] \subseteq W^c$ and W^c is N_{eu} -open in X . By assumption, there exists a $N_{eu} \alpha b^* g\alpha$ -open set V of Y such that $[f(W)]^c \subseteq V$ and $f^{-1}(V) \subseteq W^c$ and so $W \subseteq [f^{-1}(V)]^c$. Hence

$V^c \subseteq f(W) \subseteq f\left[\left(f^{-1}(V)\right)^c\right] \subseteq V^c$, which implies $f(W) = V^c$. Since V^c is $N_{eu}\alpha b^*\alpha$ -closed, $f(W)$ is $N_{eu}\alpha b^*\alpha$ -closed and f is $N_{eu}\alpha b^*\alpha$ -closed mapping.

Theorem 5.5. Let $f: (X, T_N) \rightarrow (Y, \sigma_N)$ be a N_{eu} -closed mapping and $g: (Y, \sigma_N) \rightarrow (Z, \eta_N)$ be a $N_{eu}\alpha b^*\alpha$ -closed mapping. Then their composition $gof: (X, T_N) \rightarrow (Z, \eta_N)$ is $N_{eu}\alpha b^*\alpha$ -closed.

Proof. Let F be a N_{eu} -closed set in X . Since f is N_{eu} -closed, $f(F)$ is N_{eu} -closed in Y . Since g is $N_{eu}\alpha b^*\alpha$ -closed, $g[f(F)] = (gof)(F)$ is $N_{eu}\alpha b^*\alpha$ -closed in Z . Hence gof is a $N_{eu}\alpha b^*\alpha$ -closed mapping.

Theorem 5.6. Let $f: (X, T_N) \rightarrow (Y, \sigma_N)$ and $g: (Y, \sigma_N) \rightarrow (Z, \eta_N)$ be two mappings such that their composition $gof: (X, T_N) \rightarrow (Z, \eta_N)$ is $N_{eu}\alpha b^*\alpha$ -closed. Then the following statements are true.

- (i) If f is N_{eu} -continuous and surjective, then g is $N_{eu}\alpha b^*\alpha$ -closed.
- (ii) If g is $N_{eu}\alpha b^*\alpha$ -irresolute and injective, then f is $N_{eu}\alpha b^*\alpha$ -closed.

Proof. (i) Let A be a N_{eu} -closed set of Y . Since f is N_{eu} -continuous, $f^{-1}(A)$ is N_{eu} -closed in X . Since gof is $N_{eu}\alpha b^*\alpha$ -closed, $(gof)(f^{-1}(A))$ is $N_{eu}\alpha b^*\alpha$ -closed in Z . Since f is surjective, $g(A)$ is $N_{eu}\alpha b^*\alpha$ -closed in Z . Hence g is $N_{eu}\alpha b^*\alpha$ -closed.
(ii) Let B be any N_{eu} -closed set of X . Since gof is $N_{eu}\alpha b^*\alpha$ -closed, $(gof)(B)$ is $N_{eu}\alpha b^*\alpha$ -closed in Z . Since g is $N_{eu}\alpha b^*\alpha$ -irresolute, $g^{-1}(gof(B))$ is $N_{eu}\alpha b^*\alpha$ -closed in Y . Since g is injective, $f(B)$ is $N_{eu}\alpha b^*\alpha$ -closed in Y . Hence f is $N_{eu}\alpha b^*\alpha$ -closed.

Theorem 5.7. Let $f: (X, T_N) \rightarrow (Y, \sigma_N)$ be a $N_{eu}\alpha b^*\alpha$ -closed mapping.

- (i) If A is N_{eu} -closed set of X , then the restriction $f_A: A \rightarrow Y$ is $N_{eu}\alpha b^*\alpha$ -closed.
- (ii) If $A = f^{-1}(B)$ for some N_{eu} -closed set B of Y , then the restriction $f_A: A \rightarrow Y$ is $N_{eu}\alpha b^*\alpha$ -closed.

Proof. (i) Let B be any N_{eu} -closed set of A . Then $B = A \cap F$ for some N_{eu} -closed set F of X and so B is N_{eu} -closed in X . By hypothesis, $f(B)$ is $N_{eu}\alpha b^*\alpha$ -closed in Y . But $f(B) = f_A(B)$, therefore f_A is a $N_{eu}\alpha b^*\alpha$ -closed mapping.

(ii) Let D be any N_{eu} -closed set of A . Then $D = A \cap H$ for some N_{eu} -closed set H in X . Now, $f_A(D) = f(D) = f(A \cap H) = f[f^{-1}(B) \cap H] = B \cap f(H)$. Since f is a $N_{eu}\alpha b^*\alpha$ -closed mapping, so $f(H)$ is a $N_{eu}\alpha b^*\alpha$ -closed set in Y . Hence f_A is a $N_{eu}\alpha b^*\alpha$ -closed mapping.

Theorem 5.8. A function $f: (X, T_N) \rightarrow (Y, \sigma_N)$ is $N_{eu}\alpha b^*\alpha$ -open if and only if $f[N_{eu}Int(A)] \subseteq N_{eu}\alpha b^*\alpha$ -Int $[f(A)]$, for every N_{eu} -set A of X .

Proof. Suppose $f : (X, T_N) \rightarrow (Y, \sigma_N)$ is a $N_{eu}\alpha b^* \alpha$ -open function and A is any N_{eu} -set in X . Then $N_{eu}Int(A)$ is a N_{eu} -open set in X . Since $f|_{N_{eu}Int(A)}$ is $N_{eu}\alpha b^* \alpha$ -open, $f[N_{eu}Int(A)]$ is a $N_{eu}\alpha b^* \alpha$ -open set. Since $N_{eu}\alpha b^* \alpha$ -Int $[f(N_{eu}Int(A))]$ $\subseteq N_{eu}\alpha b^* \alpha$ -Int $[f(A)]$, $f[N_{eu}Int(A)] \subseteq N_{eu}\alpha b^* \alpha$ -Int $[f(A)]$.

Conversely, $f[N_{eu}Int(A)] \subseteq N_{eu}\alpha b^* \alpha$ -Int $[f(A)]$ for every N_{eu} -set A in X . Let U be a N_{eu} -open set in X . Then $N_{eu}Int(U) = U$ and by hypothesis, $f(U) \subseteq N_{eu}\alpha b^* \alpha$ -Int $[f(U)]$. But $N_{eu}\alpha b^* \alpha$ -Int $[f(U)] \subseteq f(U)$. Therefore, $f(U) = N_{eu}\alpha b^* \alpha$ -Int $[f(U)]$. Then $f(U)$ is $N_{eu}\alpha b^* \alpha$ -open. Hence f is a $N_{eu}\alpha b^* \alpha$ -open mapping.

Theorem 5.9. A function $f : (X, T_N) \rightarrow (Y, \sigma_N)$ is $N_{eu}\alpha b^* \alpha$ -open if and only if for each $x_{(r,s,t)} \in X$ and for each N_{eu} -neighbourhood U of $x_{(r,s,t)}$ in X , there exists a $N_{eu}\alpha b^* \alpha$ -neighbourhood W of $f(x_{(r,s,t)})$ in Y such that $W \subseteq f(U)$.

Proof. Let $f : (X, T_N) \rightarrow (Y, \sigma_N)$ be a $N_{eu}\alpha b^* \alpha$ -open function. Let $x_{(r,s,t)} \in X$ and U be any arbitrary N_{eu} -neighbourhood of $x_{(r,s,t)}$ in X . Then there exists a N_{eu} -open set G such that $x_{(r,s,t)} \in G \subseteq U$. By Theorem 5.8, $f(G) = f[N_{eu}Int(G)] \subseteq N_{eu}\alpha b^* \alpha$ -Int $[f(G)]$. But, $N_{eu}\alpha b^* \alpha$ -Int $[f(G)] \subseteq f(G)$. Therefore, $N_{eu}\alpha b^* \alpha$ -Int $[f(G)] = f(G)$ and hence $f(G)$ is $N_{eu}\alpha b^* \alpha$ -open in Y . Since $x_{(r,s,t)} \in G \subseteq U$, $f(x_{(r,s,t)}) \in f(G) \subseteq f(U)$ and so the result follows by taking $W = f(G)$.

Conversely, Let U be any N_{eu} -open set in X . Let $x_{(r,s,t)} \in U$ and $f(x_{(r,s,t)}) = y_{(k,l,m)}$. Then by assumption there exists a $N_{eu}\alpha b^* \alpha$ -neighbourhood $W_{(y_{(k,l,m)})}$ of $y_{(k,l,m)}$ in Y such that $W_{(y_{(k,l,m)})} \subseteq f(U)$. Since $W_{(y_{(k,l,m)})}$ is a $N_{eu}\alpha b^* \alpha$ -neighbourhood of $y_{(k,l,m)}$, there exists a $N_{eu}\alpha b^* \alpha$ -open set $V_{(y_{(k,l,m)})}$ in Y such that $y_{(k,l,m)} \in V_{(y_{(k,l,m)})} \subseteq W_{(y_{(k,l,m)})}$. Therefore, $f(U) = \bigcup \{V_{(y_{(k,l,m)})} : y_{(k,l,m)} \in f(U)\}$. Since the union of $N_{eu}\alpha b^* \alpha$ -open sets is $N_{eu}\alpha b^* \alpha$ -open, $f(U)$ is a $N_{eu}\alpha b^* \alpha$ -open set in Y . Thus, f is a $N_{eu}\alpha b^* \alpha$ -open mapping.

Theorem 5.10. For any bijective mapping $f : (X, T_N) \rightarrow (Y, \sigma_N)$ the following statements are equivalent:

- (i) $f^{-1} : Y \rightarrow X$ is $N_{eu}\alpha b^* \alpha$ -continuous.
- (ii) f is $N_{eu}\alpha b^* \alpha$ -open.
- (iii) f is $N_{eu}\alpha b^* \alpha$ -closed.

Proof. (i) \Rightarrow (ii): Let U be a N_{eu} -open set in X . By assumption, $(f^{-1})^{-1}(U) = f(U)$ is N_{eu} - $\alpha b^* \text{ga}$ -open in Y and so f is N_{eu} - $\alpha b^* \text{ga}$ -open.

(ii) \Rightarrow (iii): Let F be a N_{eu} -closed set of X . Then F^c is a N_{eu} -open set in X . By assumption $f(F^c)$ is N_{eu} - $\alpha b^* \text{ga}$ -open in Y . But $f(F^c) = [f(F)]^c$. Therefore $f(F)$ is N_{eu} - $\alpha b^* \text{ga}$ -closed set in Y . Hence, f is N_{eu} - $\alpha b^* \text{ga}$ -closed.

(iii) \Rightarrow (i): Let F be a N_{eu} -closed set of X . By assumption, $f(F)$ is N_{eu} - $\alpha b^* \text{ga}$ -closed set in Y . But $f(F) = (f^{-1})^{-1}(F)$ and therefore by Theorem 3.4, $f^{-1}:Y \rightarrow X$ is N_{eu} - $\alpha b^* \text{ga}$ -continuous.

6 Strongly Neutrosophic $\alpha b^* \text{ga}$ -Continuous Mappings and Perfectly Neutrosophic $\alpha b^* \text{ga}$ -Continuous Mappings

In this section, we introduce and study the concepts of strongly N_{eu} - $\alpha b^* \text{ga}$ -continuous and perfectly N_{eu} - $\alpha b^* \text{ga}$ -continuous mappings in N_{eu} -Top-Spaces.

Definition 6.1. A mapping $f:(X, T_N) \rightarrow (Y, \sigma_N)$ is called strongly N_{eu} - $\alpha b^* \text{ga}$ -continuous if the inverse image of every N_{eu} - $\alpha b^* \text{ga}$ -open set in Y is N_{eu} -open in X .

Definition 6.2. A mapping $f:(X, T_N) \rightarrow (Y, \sigma_N)$ is called perfectly N_{eu} - $\alpha b^* \text{ga}$ -continuous if the inverse image of every N_{eu} - $\alpha b^* \text{ga}$ -open set in Y is N_{eu} -clopen in X .

Theorem 6.3. Let $f:(X, T_N) \rightarrow (Y, \sigma_N)$ be a mapping. Then the following statements are true:

- (i) If f is perfectly N_{eu} - $\alpha b^* \text{ga}$ -continuous, then f is perfectly N_{eu} -continuous.
- (ii) If f is strongly N_{eu} - $\alpha b^* \text{ga}$ -continuous, then f is N_{eu} -continuous.

Proof. (i) Let $f:X \rightarrow Y$ be perfectly N_{eu} - $\alpha b^* \text{ga}$ -continuous. Let V be a N_{eu} -open set in Y . Then V is N_{eu} - $\alpha b^* \text{ga}$ -open set in Y . Since f is perfectly N_{eu} - $\alpha b^* \text{ga}$ -continuous, $f^{-1}(V)$ is N_{eu} -clopen in X . Hence f is perfectly N_{eu} -continuous.

(ii) Let $f:X \rightarrow Y$ be strongly N_{eu} - $\alpha b^* \text{ga}$ -continuous. Let G be a N_{eu} -open set in Y . Then G is N_{eu} - $\alpha b^* \text{ga}$ -open set in Y . Since f is strongly N_{eu} - gsa^* -continuous, $f^{-1}(G)$ is N_{eu} -open in X . Therefore f is N_{eu} -continuous.

Theorem 6.4. Let $f:X \rightarrow Y$ be strongly N_{eu} - $\alpha b^* \text{ga}$ -continuous and A be N_{eu} -open set in X . Then the restriction map, $f_A:A \rightarrow Y$ is strongly N_{eu} - $\alpha b^* \text{ga}$ -continuous.

Proof. Let V be any N_{eu} - $\alpha b^* \text{ga}$ -open set in Y . Since f is strongly N_{eu} - gsa^* -continuous, $f^{-1}(V)$ is N_{eu} -open in X . But $f_A^{-1}(V) = A \cap f^{-1}(V)$. Since A and $f^{-1}(V)$ are N_{eu} -open, $f_A^{-1}(V)$ is N_{eu} -open in A . Hence f_A is strongly N_{eu} - gsa^* -continuous.

Theorem 6.5. Every perfectly $N_{eu}\alpha b^*\alpha$ -continuous mapping $f:(X, T_N) \rightarrow (Y, \sigma_N)$ is strongly $N_{eu}\alpha b^*\alpha$ -continuous.

Proof. Let $f:X \rightarrow Y$ be perfectly $N_{eu}\alpha b^*\alpha$ -continuous and V be $N_{eu}\alpha b^*\alpha$ -open set in Y . Since f is perfectly $N_{eu}\alpha b^*\alpha$ -continuous, $f^{-1}(V)$ is N_{eu} -clopen in X . That is both N_{eu} -open and N_{eu} -closed in X . Hence f is strongly $N_{eu}\alpha b^*\alpha$ -continuous.

Theorem 6.6. If $f:(X, T_N) \rightarrow (Y, \sigma_N)$ and $g:(Y, \sigma_N) \rightarrow (Z, \eta_N)$ are strongly $N_{eu}\alpha b^*\alpha$ -continuous, then $gof:(X, T_N) \rightarrow (Z, \eta_N)$ is also strongly $N_{eu}\alpha b^*\alpha$ -continuous.

Proof. Let V be a N_{eu} -open set in Z . Since g is a strongly $N_{eu}\alpha b^*\alpha$ -continuous mapping, $g^{-1}(V)$ is N_{eu} -open in Y . Then $g^{-1}(V)$ is N_{eu} -open in Y . Since f is a strongly $N_{eu}\alpha b^*\alpha$ -continuous mapping, $f^{-1}[g^{-1}(V)] = (gof)^{-1}(V)$ is N_{eu} -open in X . Therefore, gof is strongly $N_{eu}\alpha b^*\alpha$ -continuous.

Theorem 6.7. If $f:(X, T_N) \rightarrow (Y, \sigma_N)$ and $g:(Y, \sigma_N) \rightarrow (Z, \eta_N)$ are perfectly $N_{eu}\alpha b^*\alpha$ -continuous mappings, then their composition $gof:(X, T_N) \rightarrow (Z, \eta_N)$ is also perfectly $N_{eu}\alpha b^*\alpha$ -continuous mapping.

Proof. Let V be a $N_{eu}\alpha b^*\alpha$ -open set in Z . Since g is a perfectly $N_{eu}\alpha\beta\alpha^*$ -continuous mapping, $g^{-1}(V)$ is N_{eu} -clopen in Y . That is $g^{-1}(V)$ both N_{eu} -open and N_{eu} -closed in X . Then $g^{-1}(V)$ is $N_{eu}\alpha b^*\alpha$ -open set in X . Since f is a perfectly $N_{eu}\alpha\beta\alpha^*$ -continuous mapping, $f^{-1}[g^{-1}(V)] = (gof)^{-1}(V)$ is N_{eu} -clopen in X . Therefore gof is perfectly $N_{eu}\alpha b^*\alpha$ -continuous.

Theorem 6.8. Let $f:(X, T_N) \rightarrow (Y, \sigma_N)$ and $g:(Y, \sigma_N) \rightarrow (Z, \eta_N)$ be mappings. Then the following statements are true.

- (i) If g is strongly $N_{eu}\alpha b^*\alpha$ -continuous and f is $N_{eu}\alpha b^*\alpha$ -continuous, then gof is $N_{eu}\alpha b^*\alpha$ -irresolute.
- (ii) If g is perfectly $N_{eu}\alpha b^*\alpha$ -continuous and f is N_{eu} -continuous, then gof is strongly $N_{eu}\alpha b^*\alpha$ -continuous.
- (iii) If g is strongly $N_{eu}\alpha b^*\alpha$ -continuous and f is perfectly $N_{eu}\alpha b^*\alpha$ -continuous, then gof is perfectly $N_{eu}\alpha b^*\alpha$ -continuous.
- (iv) If g is $N_{eu}\alpha b^*\alpha$ -continuous and f is strongly $N_{eu}\alpha b^*\alpha$ -continuous, then gof is N_{eu} -continuous.

Proof. (i) Let V be a $N_{eu}\alpha b^*\alpha$ -open set in Z . Since g is a strongly $N_{eu}\alpha b^*\alpha$ -continuous mapping, $g^{-1}(V)$ is N_{eu} -open set in Y . Since f is a $N_{eu}\alpha b^*\alpha$ -continuous mapping,

$f^{-1}[g^{-1}(V)] = (gof)^{-1}(V)$ is $N_{eu}\alpha b^* \alpha$ -open set in X . Hence gof is $N_{eu}\alpha b^* \alpha$ -irresolute.

(ii) Let V be a $N_{eu}\alpha b^* \alpha$ -open set in Z . Since g is a perfectly $N_{eu}\alpha b^* \alpha$ -continuous mapping, $g^{-1}(V)$ is N_{eu} -clopen set in Y . That is, $g^{-1}(V)$ is both N_{eu} -open and N_{eu} -closed. Since f is a $N_{eu}\alpha b^* \alpha$ -continuous mapping, $f^{-1}[g^{-1}(V)] = (gof)^{-1}(V)$ is N_{eu} -open in X . Therefore gof is strongly $N_{eu}\alpha b^* \alpha$ -continuous.

(iii) Let V be a $N_{eu}\alpha b^* \alpha$ -open set in Z . Since g is a strongly $N_{eu}\alpha b^* \alpha$ -continuous mapping, $g^{-1}(V)$ is N_{eu} -open set in Y . Since every N_{eu} -open set is $N_{eu}\alpha b^* \alpha$ -open set. So $g^{-1}(V)$ is $N_{eu}\alpha b^* \alpha$ -open set in X . Since f is a perfectly $N_{eu}\alpha b^* \alpha$ -continuous mapping, $f^{-1}[g^{-1}(V)] = (gof)^{-1}(V)$ is N_{eu} -clopen in X . Hence gof is perfectly $N_{eu}\alpha b^* \alpha$ -continuous.

(iv) Let V be a N_{eu} -open set in Z . Since g is a $N_{eu}\alpha b^* \alpha$ -continuous mapping, $g^{-1}(V)$ is $N_{eu}\alpha b^* \alpha$ -open set in Y . Since f is a strongly $N_{eu}\alpha b^* \alpha$ -continuous map, $f^{-1}[g^{-1}(V)] = (gof)^{-1}(V)$ is N_{eu} -open in X . So gof is N_{eu} -continuous.

7 Contra Neutrosophic $\alpha b^* \alpha$ -Continuous Mappings and Contra Neutrosophic $\alpha b^* \alpha$ -Irresolute Mappings

In this section, we introduce the concepts of contra $N_{eu}\alpha b^* \alpha$ -continuous mappings and contra $N_{eu}\alpha b^* \alpha$ -irresolute mappings and investigate their fundamental properties and characterizations.

Definition 7.1. A mapping $f: (X, T_N) \rightarrow (Y, \sigma_N)$ is said to be contra N_{eu} -continuous if the inverse image of every N_{eu} -open set in Y is N_{eu} -closed set in X .

Definition 7.2. A mapping $f: (X, T_N) \rightarrow (Y, \sigma_N)$ is called contra $N_{eu}\alpha b^* \alpha$ -continuous if the inverse image of every N_{eu} -open set in Y is $N_{eu}\alpha b^* \alpha$ -closed in X .

Theorem 7.3. Let $f: (X, T_N) \rightarrow (Y, \sigma_N)$ be a contra N_{eu} -continuous mapping. Then f is contra $N_{eu}\alpha b^* \alpha$ -continuous.

Proof. Let V be any N_{eu} -open set in Y . Since f is contra N_{eu} -continuous, $f^{-1}(V)$ is N_{eu} -closed set in X . As every N_{eu} -closed set is $N_{eu}\alpha b^* \alpha$ -closed, we have $f^{-1}(V)$ is $N_{eu}\alpha b^* \alpha$ -closed set in X . Therefore f is contra $N_{eu}\alpha b^* \alpha$ -continuous.

Theorem 7.4. A mapping $f: (X, T_N) \rightarrow (Y, \sigma_N)$ is contra $N_{eu}\alpha b^* \alpha$ -continuous if and only if the inverse image of every N_{eu} -closed set in Y is $N_{eu}\alpha b^* \alpha$ -open set in X .

Proof. Let V be a N_{eu} -closed set in Y . Then V^C is N_{eu} -open set in Y . Since f is contra $N_{eu}\alpha b^*\alpha\alpha$ -continuous, $f^{-1}(V^C)$ is $N_{eu}\alpha b^*\alpha\alpha$ -closed set in X . But $f^{-1}(V^C) = 1 - f^{-1}(V)$ and so $f^{-1}(V)$ is $N_{eu}\alpha b^*\alpha\alpha$ -open set in X . Conversely, assume that the inverse image of every N_{eu} -closed set in Y is $N_{eu}\alpha b^*\alpha\alpha$ -open in X . Let W be a N_{eu} -open set in Y . Then W^C is N_{eu} -closed in Y . By hypothesis $f^{-1}(W^C) = 1 - f^{-1}(W)$ is $N_{eu}\alpha b^*\alpha\alpha$ -open in X , and so $f^{-1}(W)$ is $N_{eu}\alpha b^*\alpha\alpha$ -closed set in X . Thus f is contra $N_{eu}\alpha\alpha\alpha^*$ -continuous.

Theorem 7.5. If a mapping $f:(X, T_N) \rightarrow (Y, \sigma_N)$ is contra $N_{eu}\alpha b^*\alpha\alpha$ -continuous and $g:(Y, \sigma_N) \rightarrow (Z, \eta_N)$ is N_{eu} -continuous, then their composition $gof:(X, T_N) \rightarrow (Z, \eta_N)$ is contra $N_{eu}\alpha b^*\alpha\alpha$ -continuous.

Proof. Let W be a N_{eu} -open set in Z . Since g is N_{eu} -continuous, $g^{-1}(W)$ is N_{eu} -open set in Y . Since f is contra $N_{eu}\alpha b^*\alpha\alpha$ -continuous, $f^{-1}[g^{-1}(W)]$ is $N_{eu}\alpha b^*\alpha\alpha$ -closed set in X . But $(gof)^{-1}(W) = f^{-1}[g^{-1}(W)]$. Thus gof is contra $N_{eu}\alpha b^*\alpha\alpha$ -continuous.

Definition 7.6. A mapping $f:(X, T_N) \rightarrow (Y, \sigma_N)$ is called contra $N_{eu}\alpha b^*\alpha\alpha$ -irresolute if the inverse image of every $N_{eu}\alpha b^*\alpha\alpha$ -open set in Y is $N_{eu}\alpha b^*\alpha\alpha$ -closed in X .

Theorem 7.7. If a mapping $f:(X, T_N) \rightarrow (Y, \sigma_N)$ is contra $N_{eu}\alpha b^*\alpha\alpha$ -irresolute, then it is contra $N_{eu}\alpha b^*\alpha\alpha$ -continuous.

Proof. Let V be a N_{eu} -open set in Y . Since every N_{eu} -open set is $N_{eu}\alpha b^*\alpha\alpha$ -open, V is N_{eu} -open set in Y . Since f is contra $N_{eu}\alpha b^*\alpha\alpha$ -irresolute, $f^{-1}(V)$ is $N_{eu}\alpha b^*\alpha\alpha$ -closed set in X . Thus f is contra $N_{eu}\alpha b^*\alpha\alpha$ -continuous.

Theorem 7.8. Let (X, T_N) , (Y, σ_N) and (Z, η_N) be N_{eu} -Top-Spaces. If $f:(X, T_N) \rightarrow (Y, \sigma_N)$ is contra $N_{eu}\alpha b^*\alpha\alpha$ -irresolute and $g:(Y, \sigma_N) \rightarrow (Z, \eta_N)$ is $N_{eu}\alpha b^*\alpha\alpha$ -continuous, then $gof:(X, T_N) \rightarrow (Z, \eta_N)$ is contra $N_{eu}\alpha b^*\alpha\alpha$ -continuous.

Proof. Let W be any N_{eu} -open set in Z . Since g is $N_{eu}\alpha b^*\alpha\alpha$ -continuous, $g^{-1}(W)$ is $N_{eu}\alpha b^*\alpha\alpha$ -open set in Y . Since f is contra $N_{eu}\alpha b^*\alpha\alpha$ -irresolute, $f^{-1}[g^{-1}(W)]$ is $N_{eu}\alpha b^*\alpha\alpha$ -closed set in X . But $(gof)^{-1}(W) = f^{-1}[g^{-1}(W)]$. Thus gof is contra $N_{eu}\alpha b^*\alpha\alpha$ -continuous.

Theorem 7.9. If $f:(X, T_N) \rightarrow (Y, \sigma_N)$ is $N_{eu}\alpha b^*\alpha\alpha$ -irresolute and $g:(Y, \sigma_N) \rightarrow (Z, \eta_N)$ is contra $N_{eu}\alpha b^*\alpha\alpha$ -irresolute, then their composition $gof:(X, T_N) \rightarrow (Z, \eta_N)$ is contra $N_{eu}\alpha b^*\alpha\alpha$ -irresolute mapping.

Proof. Let W be any $N_{eu}\alpha b^*\alpha$ -open set in Z . Since g is contra $N_{eu}\alpha b^*\alpha$ -irresolute, $g^{-1}(W)$ is $N_{eu}\alpha b^*\alpha$ -closed set in Y . Since f is $N_{eu}\alpha b^*\alpha$ -irresolute, $f^{-1}[g^{-1}(W)]$ is $N_{eu}\alpha b^*\alpha$ -closed set in X . But $(gof)^{-1}(W) = f^{-1}[g^{-1}(W)]$. Thus gof is contra $N_{eu}\alpha b^*\alpha$ -irresolute.

Conclusion

In this research article, we have introduced and studied the properties of $N_{eu}\alpha b^*\alpha$ -continuous functions, $N_{eu}\alpha b^*\alpha$ -irresolute functions, $N_{eu}\alpha s\alpha^*$ -closed functions, $N_{eu}\alpha b^*\alpha$ -open functions, strongly $N_{eu}\alpha b^*\alpha$ -continuous functions, perfectly $N_{eu}\alpha b^*\alpha$ -continuous functions, contra $N_{eu}\alpha b^*\alpha$ -continuous functions, and contra $N_{eu}\alpha b^*\alpha$ -irresolute functions in N_{eu} -Top-Spaces and established the relations between them. We have obtained fundamental characterizations of these mappings and investigated preservation properties. We expect the results in this article will be basis for further applications of mappings in N_{eu} -Top-Spaces.

Recommendations

It is recommended to introduce $N_{eu}\alpha b^*\alpha$ -compactness, $N_{eu}\alpha b^*\alpha$ -connectedness, $N_{eu}\alpha b^*\alpha$ -regular spaces, and $N_{eu}\alpha b^*\alpha$ -normal spaces in N_{eu} -Top-Spaces and investigate their fundamental properties and characterizations.

Scientific Ethics Declaration

*The author declares that the scientific ethical and legal responsibility of this article published in EPSTEM journal belongs to the author.

Conflict of Interest

*The author declares no competing interests.

Funding

* This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Acknowledgements or Notes

* This article was presented as an oral presentation at the International Conference on Basic Sciences and Technology (www.icbast.net) held in Budapest/Italy on August 28-31, 2025.

* The author is indebted to Prince Mohammad Bin Fahd University Al Khobar Saudi Arabia for providing necessary research facilities during the preparation of this research paper.

References

Ali Abbas, N. M., & Shuker Mahmood Khalil. (2021). On new classes of neutrosophic continuous and contra mappings in neutrosophic topological spaces, *Int. J. Nonlinear Anal. Appl.* 12(1), 718- 725.

Aras, C. G., & Bayramov, S. (2020). Neutrosophic soft continuity in neutrosophic soft topological spaces. *Filomat*, 34(10), 3495-3506.

Arokiarani, I., Dhavaseelan, R., Jafari, S., & Parimala, M. (2017). On some new notions and functions in neutrosophic topological spaces. *Neutrosophic Sets and Systems*, 16, 16-19.

Atanassov, K. (1986). Intuitionistic fuzzy sets. *Fuzzy Sets And Systems*, 87-94.

Atkinswestley, A. & Chandrasekar, S. (2020). Neutrosophic g^* -Closed Sets and its Maps, *Neutrosophic Sets and Systems*, 36, 96 – 107.

Bera, T., & Mahapatra, N. K. (2016). On neutrosophic soft function. *Ann. Fuzzy Math. Inform.*, 12(1), 101-119.

Blessie Rebecca, S., & Francina Shalini, A. (2019). Neutrosophic generalized regular contra continuity in neutrosophic topological spaces. *Research in Advent Technology*, 7(2), 761-765.

Damodharan, K. & Vigneshwaran, M. & Khalil, Shuker. (2020). $N_{\delta^*g\alpha}$ -Continuous and Irresolute Functions in Neutrosophic Topological Spaces, *Neutrosophic Sets and Systems*, Vol. 38, pp. 439 – 452.

Dhavaseelan, R., Jafari, S., & Page, M., & Hanif, D. (2018). Neutrosophic generalized α -contra-continuity, *Creat. Math. Inform.*, 27(2), 133 – 139.

Hanif, P. A. G. E., & Imran, Q. H. (2020). *Neutrosophic generalized homeomorphism*. Infinite Study.

Keerthana, K. S., Vigneshwaran, M., & Vidyarani, L. (2023). On αb^* $g\alpha$ -closed sets in topological spaces. *Journal of Statistics and Mathematical Engineering*, 9(3), 14-19.

Kumar, S. K., Mandarasalam, V., Jafari, S., & Lakshmanadas, V. (2024). N_{xb^*gx} -Closed Sets in Neutrosophic Topological Spaces. *Neutrosophic Sets and Systems*, 73(1), 31.

Maheswari, C., & Chandrasekar, S. (2020). *Neutrosophic gb-closed Sets and Neutrosophic gb-Continuity*. Infinite Study.

Margaret, A. M., & Pricilla, M. T. (2018). Neutrosophic Vague Generalized Pre-Continuous and Irresolute Mappings. *International Journal of Engineering, Science and Mathematics*, 7(2), 228-244.

Missier, S. Pious, Anusuya, A. and Nagarajan, A. (2022). Neutrosophic Beta Omega Mapping in Neutrosophic Topological Spaces, *International Journal of Mechanical Engineering*, 7(3), 621-625.

Nandhini, T. & Vigneshwaran, M. (2019). $N_{\alpha g^*\psi}$ -Continuous and $N_{\alpha g^*\psi}$ -Irresolute functions in neutrosophic topological spaces, *International Journal of Recent Technology and Engineering (IJRTE)*, 7(6), 1097 – 1101.

Narmatha, S., Glory, B. E., & Vishnu, P. R. (2019). On $\pi g\beta$ -Closed Sets and Mappings in Neutrosophic Topological Spaces. *International Journal of Innovative Technology and Exploring Engineering (IJITEE)*, 8(125), 505-510.

Nivetha, A. R., Vigneshwaran, M., Ali Abbas, N. M., & Khalil, S. M. (2021). On-continuous in topological spaces of neutrosophy. *Journal of Interdisciplinary Mathematics*, 24(3), 677-685.

Öztürk, T. Y., Karataş, E., & Yolcu, A. (2021). On neutrosophic soft continuous mappings. *Turkish Journal of Mathematics*, 45(1), 81-95.

Parimala, M., Jeevitha, R., Jafari, S., Smarandache, F., & Udhayakumar, R. (2018). Neutrosophic $\alpha\psi$ -homeomorphism in neutrosophic topological spaces. *Information*, 9(8), 187.

Chandrasekar, S. (2019). *Neutrosophic ags continuity and neutrosophic ags irresolute maps*. Infinite Study.

Puvaneshwari, P. J., & Bageerathi, K. (2019). Some functions concerning neutrosophic feebly open & closed sets. *International Journal of Scientific Research and Reviews*, 8(2), 1546 – 1559.

Kannan, T. R., & Chandrasekar, S. (2020). Neutrosophic PRE- α , SEMI- α and PRE- β irresolute open and closed mappings in Neutrosophic topological spaces. *Malaya Journal of Matematik*, 8(4), 1795-1806.

Ramesh, K. (2020). Ngpr homeomorphism in neutrosophic topological spaces. *Neutrosophic Sets and Systems*, 32, 25-37.

Blessie Rebecca, S., & Francina Shalini, A. (2019). Neutrosophic generalized regular contra continuity in neutrosophic topological spaces. *Research in Advent Technology*, 7(2), 761-765.

Rodrigo, P. A., & Maheswari, S. (2021). Neutrosophic generalized semi alpha star closed sets in neutrosophic topological space. *Journal of Human University (Natural Sciences)*, 48(11) 1156 – 1175.

Salama, A. A., Smarandache, F., & Kromov, V. (2014). *Neutrosophic closed set and neutrosophic continuous functions*. Infinite Study.

Saranya, S., & Vigneshwaran, M. (2019). *Neutrosophic bga-Closed Sets*. Infinite Study.

Smarandache, F. (2002). Neutrosophy and neutrosophic logic, first international conference on neutrosophy. *Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM, 87301*.

Thirumalaiswamy, M., & Ramesh, K. (2013). Semipre generalized continuous and irresolute mappings in intuitionistic fuzzy topological spaces. *Inter. Ref. J. Engi., and Sci*, 2, 41-48.

Vadivel, A., Thangaraja, P., & Sundar, C. J. (2021). *Neutrosophic e-continuous maps and neutrosophic e-irresolute maps*. Infinite Study.

Author(s) Information

Raja Mohammad Latif

Department of Mathematics and Natural Sciences
Prince Mohammad Bin Fahd University
Al Khobar, Saudi Arabia
Contact e-mail: rajamlatif@yahoo.com

To cite this article:

Latif, R. M. (2025). Neutrosophic α B*G α functions in neutrosophic topological spaces. *The Eurasia Proceedings of Science, Technology, Engineering and Mathematics (EPSTEM)*, 36, 276-296.