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Abstract: The notion of a neutrosophic set is generally referred to as the generalization of an intuitionistic
fuzzy set. Studying open and closed set variations is crucial in Neutrosophic topology, given the growing
significance of Neutrosophic sets in various applications. The origin, nature, and scope of neutrality are
explored through the Neutrosophic set. This concept is crucial for research due to its potential applications
across various scientific and technological fields. Because the universe inherently contains indeterminacy, the
Neutrosophic set provides a valuable framework for study. It is currently being developed to represent data that
is uncertain, imprecise, incomplete, or inconsistent. A Neutrosophic set is described using three membership
functions: truth, indeterminacy, and falsity. This approach helps to manage uncertainty and leads to more logical
outcomes in practical scenarios. Additionally, the Neutrosophic set can identify inconsistencies within data and
offer solutions to real-world problems. Neutrosophic functions, based on the Neutrosophic Set Theory, have
broad and growing applications due to their ability to model uncertainty, indeterminacy, and inconsistency in
data. Here are some of the key areas where neutrosophic functions are applied: Artificial Intelligence &
Machine Learning, Data Science and Information Fusion, Decision-Making and Multi-Criteria Decision
Analysis (MCDA), Business and Economics, Healthcare and Medical Diagnosis, and Control Systems and
Robotics. In 2024, Suthi Keerthana Kumar, Vigneshwaran Mandarasalam, Saied Jafari, and Vidyarani
Lakshmanadas described the concepts of Neutrosophic ab*go-closed sets, Neutrosophic ab*ga-open sets,
Neutrosophic ab*ga-border, and Neutrosophic ab*ga-frontier and discussed their properties in Neutrosophic
topological spaces. In this research paper, we introduce the concepts of Neutrosophic ab*ga-continuous
(Nab*ga-continuous) maps, Noab*ga-irresolute maps, Nab*ga-closed maps, Noab*ga-open maps, strongly
Noab*ga-continuous maps, perfectly Nab*ga-continuous maps, contra Nab*ga-continuous maps, and contra
Noab*ga-irresolute maps in Neutrosophic topological spaces. We investigate and obtain several properties and
characterizations concerning these mappings in Neutrosophic topological spaces

Keywords: Neutrosophic ab*ga-continuous map, Neutrosophic ab*ga-irresolute map, Neutrosophic ab*ga-
closed map, Neutrosophic ab*ga-open map, Contra neutrosophic ab*ga-irresolute map

Introduction

Many real-life problems in Business, Finance, Medical Sciences, Engineering, and Social Sciences deal with
uncertainties. Smarandache studies neutrosophic set as an approach for solving issues that cover unreliable,
indeterminacy, and persistent data. Applications of neutrosophic topology depend upon the properties of
neutrosophic closed sets, neutrosophic open sets, neutrosophic interior operator, neutrosophic closure operator,
and neutrosophic sets. Neutrosophic topological space, neutrosophic ab*ga-open set, neutrosophic ab*ga-
closed set, neutrosophic ab*ga-continuous map, neutrosophic ab*ga-irresolute map, neutrosophic ab*ga-closed
map, neutrosophic ab*ga-open map, strongly neutrosophic ab*ga-continuous map, perfectly neutrosophic
ab*ga-continuous map, contra neutrosophic ab*ga-continuous map, contra neutrosophic ab*ga-irresolute map.
We investigate and obtain several properties and characterizations concerning these mappings in Neutrosophic
topological spaces
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2-Preliminaries

Definition 2.1. Let X be a non-empty fixed set. A neutrosophic set (N _, —set) P is an object having the
form P= {(x, Hp (x) ,Op (x) »Vp (x)> X e X} , where Up (x) - represents the degree of membership,

Op (x ) - represents the degree of indeterminacy, and 7 p (x) - represents the degree of non-membership.

Definition 2.2. A neutrosophic topology on a non-empty set X is a family T, of neutrosophic subsets of
X satisfying

(i) 0y, 1, €T,

(ii) GNHeT, forevery G,HeT,,

(iii) UGj eT, for every{Gj i GJ} Ty

jed
Then the pair (X ,T N) is called a neutrosophic topoN _ -openlogical space (N . —Top —Space). The
clements of T, are called neutrosophic open (N o —open) sets in X. A N _ -set A is called a neutrosophic

closed (N , —closed) set if and only if its complement A isa N _ -open set.

Definition 2.3. Let (X,T,) bea N _ -Top-Spaceand 4 bea N _ -set. Then

(i) The neutrosophic interior of A4, denoted by N , =Int (A) is the union of all N _ -open subsets of X
contained in  A.
(ii) The neutrosophic closure of A denoted by N euCl(A)is the intersection of all N _ —closed sets

containing A.

Definition 2.4. Let 4 be a N _ -setin a N _ -Top -Space (X ,TN). Then the set A is called a
(i) neutrosophic  semi-open N _ -open (N .S —open) set in a N _, -Top -Space X if
AcN CI[N  Int(4)].

(ii) neutrosophic semi-closed (N _s~closed) setina N _ ~Top -Space X if N, [nt [N e (A)] c A

Definition 2.5. Let 4 be a N _ -setin a N _ -Top -Space (X ,TN). Then the set A is called a
neutrosophic ot —closed  (respectively, neutrosophical —open) set in N _ -Top -Space X if
N, CI N, nt(N,Cl(4))] < 4.

Definition 2.6. Let 4 be a N _ -set in a N _ -Top-Space (X ,TN). Then the set A is called a
neutrosophic generalized closed(N eug—closed) set in N _ -Top -Space (X ,T N)if N _, —Cl(A)g G,
whenever A G and Gis N _ —opensetin X. AC N eu]nt[N euCl(A)]U N MCI[N eulm‘(A)].

Definition 2.7. Let 4 be a N _ -set in a N _ -Top-Space (X ,TN). Then the set A is called a

neutrosophic  generalized semi-closed (N ..0s —closed) set in N _ -Top-Space (X ,TN) if

N _, =CI(A) = G, whenever A < G and Gis N _, —open setin X.
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Definition 2.8. Let 4 be a N _ —setin a N _ -Top -Space (X ,TN). Then the set A is called a
Neutrosophic & —generalized closed(N wag-closed ) set in N _ -Top-Space (X ,T N) if
N o —CZ(A)Q G whenever AC G and G is N, —open setin X.

Definition 2.9. Let 4 be a N _ —setin a N _ -Top -Space (X , T N). Then the set A is called a
Neutrosophic o * -open (N wl® -open) set in N _, -Top Space (X Ty ) if
AcCN « —Int[N w —CI(N wl —Int(A))].

Definition 2.10. Let 4 be a N _ -setin a N _ -Top -Space (X ,TN). Then the set A is called a
Neutrosophic b —closed (N Wb —closed ) set in a N _ -Top-Space (X Ty ) if
[N, -Cl(w,, ~Int(4)) JU[ N ,, ~Int (N, -CI(4))] < 4.

Definition 2.11. Let 4 bea N _ -setina N _ -Top -Space (X ,TN). Then the set A is called

(i) a Neutrosophic go —cpen (N e 4 —open) setina N _ -Top -Space (X,TN) if VN, «a —Int(A)
whenever V' < 4 and Visa N« —closed set in (X,TN )

(ii) a Neutrosophic ga -closed (N, g —closed) set in a N _ -Top-Space (X , T N) if
N, a-CI(A)cV whenever ACV and Visa N & —open setin (X,TN).

(iii) a Neutrosophic o —open (N w Fo —Open) set in a N _ -Top-Space (X ,T N) if
VN, =Int(A) whenever V < A and Visa N ,ga ~closed setin (X,TN).

(iV) a Neutrosophic *yo —closed (N o Yo —closed ) set in a N _ -Top-Space (X , T N) if
N, =CI(A)cV whenever ACV and Visa N ,ga —open setin (X,TN).

eu

Definition 2.12. Let A bea N _ -setina N _ -Top -Space (X ,TN). Then the set A is called a

(i) a Neutrosophic b*ga —open (N W ollle 24 —Open) set in a N _ -Top-Space (X ,T N) if
VN, b=Int(A) whenever V < A and Visa N, *ga —closed setin (X,TN )

(ii) a Neutrosophic b*ga -closed (N P oo —closed ) set in a N _ -Top-Space (X ,T N) if
N, b-Cl(A)cV whenever ACV and Visa N, *ga -open setin (X,TN).

Definition 2.13. Let 4 be a N _ -setin a N _ -Top -Space (X,TN). Then the set A is called a
Neutrosophic ~ ab* gu —closed (N Lab* g —closed ) set in N _ -Top-Space (X ,T N) if
N —CI(A) c U whenever ACU and U is N b* gx —open set.

Definition 2.14. Let 4 be a N _ —setin a N _ -Top -Space (X ,TN). Then the set 4 is called a
Neutrosophic ab * g —open (N WOb* o —open) set in N _ ~Top -Space (X ,T N) if its complement
A isa N L0b* oo —closed set in (X,TN).
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Theorem 2.15. (i ) Every N, —closed setis N , ab* g —closed set.
(ii) Every N ab™® gor —closed setis N , b* g —closed set.

(iii ) Every N _ a —closed setis N , ab* go —closed set.

Theorem 2.16. Let (X ,T N) be a N —Top —=Space. Then the union and the intersection of any two

N ab* g —closed setsisa N , ab* g —closed setin N , -Top -Space (X, T, )

Theorem 2.17. Let (X ,TN) be a N —Top =Space. Then the intersection and the union of any two

N ,ab* g -opensetsisa N , ab™ g —open setin N , =Top -Space (X,TN )

Definition 2.18. A N _ -set 4 in a N -Top -Space. (X , T N) is called aneutrosophic
ab* go —intterior of A (N wab® g —Int(A)) and neutrosophic ob* go —closure of A
(N Lob* g =Cl (A)) are respectively defined by
N, ab*gu-Int(4)=U{G:GeN ,ab* gu -Int(X,T,,,) and G < A} and

N ob* g -Int(A)=U{G:GeN ,ab* gu -Int(X,T,,,) and G < A}.

Remark 2.19. Let 4 be a subset of a N, —Top =Space. (X,TN). Then N _ab*oqx —]nt(A)
(N wab* go -CZ(A)) is N ab*go -open (N w0b* g —closed) set in (X,Ty). The complement of
N ab*gu-Int(A) is N ,ab* gx -CI(A).

Definition 2.20. Let 4 be a N, -subsetof a N, -Top -Space. (X ,T N). Then the neutrosophic
ab* g —frontier of a N, -subset A of Xis denoted by N ,ab*gu—Fr(A4) and is defined

by N, ab* g —Fr(4) =[N ,ab*go ~CI(4) ]| N, ab* gou-CI(A°) ]

Theorem 2.21. For N , -sets A and B ina N, -Top -Space. (X , Ty ), the following statements are

true:

i) N ,ab*gu-Int(4)c AN ,ab* gu-CI(A).

ii) Ais N ,,0b* go.—open setin X ifand only if N ,,ob* gou ~Int( A) = A.

iii) Ais N ,ab* go~closed setin X ifand only if N ,,oh* got -Cl(4)=A.
V) N ob* g —Int[N .,ab* o —Int(A)] =N, gsa* nt(A).

V) N ab*gu-CI[N ,ab*go-Cl(A4)]|=N ,0ab*go-CI(A).

Vi) If AC B, then N, ab* gu-Int(A) =N , ab* go~Int(B).

vil) [N, ab* g ~Int(4) ] =N ,ab* gu-CI(4°).

viii) [N, ab* oo CI(4)] =N b * oo ~Int (A°).

iX) N,ab*gu-Int(ANB)=[N ,ab*gou~Int(A) N[N ,0b* go~Int(B)].
X) N ,o0b*gu-Cl(AUB)=[N ,ab*gou-CI(4)]U[N ,ab*gu-CI(B)].
Xi) [N ,0b*gu-Int(4)|U[N ,0b*go-Int(B) | N ,,0b* gu ~Int (AU B).

(
(
(
(
(
(
(
(
(
(
(
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(xii) N, ab*gu-Cl(ANB) [N ,ab*gu-Cl(4)|N[N ,ab* g -CI(B)].

Definition 2.22.Let f Z(X ,TN)—>(Y,(7 N) be a mapping. Then f is called a neutrosophic

continuous (N w —continuous) mapping if f (V) isa N —open setin X for every N , -open set
Vin Y.

Theorem 2.23.Let [ :(X , TN) —>(Y , O'N) be a mapping. Then f is called a N, —continuous

mapping if [ (V) isa N —closed setin X forevery N , —closed set Vin Y.

3 Neutrosophic ab * go. -Continuous Mappings
In this section, we introduce the concepts of neutrosophic ab* gor —continuous (N Wb * oo —continuous)
mappings in N -Top -Spaces.Also, we study some of the main results regarding

N ob* go —continuous depending on N , ab™ go. —open sets.

Definition 3.1. Let f . (X,TN) - (Y, O'N) be a mapping. Then f s called a
N ,,ob* go. ~continuous mapping if f - (V) isa N ab*go—open setin X forevery N —open set
VinY.

Theorem 3.2. Every N, —continuous mapping is N , ob* go. —continuous mapping.

Proof. Let fZ(X,TN)—>(Y, O'N) be N —continuous mapping. Let V be a N —open setin
(Y,GN).Then 7! (V) is N, —open setin (X,TN). Since every N, —open setis N, ob* go —open.

7 (V) is N, ab* goo —open setin (X,TN ) Hence f is N ob* go. —continuous mapping.

Theorem 3.3.  Let (X, TN), (Y, O'N) and (Z,T]N) be N -Top-Spaces. 1If
fi(X,TN) —)(Y,GN) is a N _ob*go—continuous mapping and gZ(Y,O'N) - (Z,T]N) is

N, —continuous mapping, then gOf : (X , T N) - (Z ,77N) isa N, ab* go —continuous mapping.

Proof. Let G be a N, -open set in Z. Since g:(Y,0,)—>(Z,ny)is N, ~continuous,
f(G)is N, -open in Y. Since f isa N ,ab*gu-continous mapping, f~'[ f7(G)] is
N ob*go-open in X. But f' [g_l(G)]:(gof)fl(G).

Then (gof) (G) is N ,ab*gu-open set in X. Hence, gof is a N ,ab* go~continuous
mapping.

Theorem 3.4. Let (X, Ty) and (Y,0y) be two N, ~Top -Spaces. Then prove that

-1
f: (X,TN) - (Y, GN) is N, ob* gou ~continuous if and only if [ (B) is N ab* go—closed set
in X forevery N, —closed set Bin Y.
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Proof. Let B be a N —closed set in Y. Then B is N -open set in Y. Since f is
N, ob* go. —continuous. Therefore [ (BC) is a N_ ab*gu-open set in X. Since

[ (BC)=|:f_l (B):IC , f (B)is N, ob* go —closed setin X.
Conversely, Let B bea N, —open setin Y. Then BSis N o —Closed setin Y. By assumption f71 (BC)
is N ab* go—closed setin X. Since [ (BC) = [f_l (B)]C , (B)is N ,,0b* gou —open set in

X. Hence fis N ob* go. —continuous.

Theorem 3.5. Let (X,TN ) and (Y, O'N) betwo N -Top -Spaces and f : X —Y be a mapping.
Then f is a N ab* go —continuous mapping if and only if
f(N ab*ga ~CI(4))c N ,ab*gx ~CI( f(A)) forevery N, =set A in X.

Proof.Let A be a N_ -set in X and f be a N _ob*go—continuous mapping. Then
evidently (4) = N ,ab* g CI[ f(4)]. Now, Ac 7 f(4)]<c
SN ab* g =CI(f(4))] and N ,ab*ga -Cl(4)c
N, ab* g —Cl[f’1 (N .ob* g —CZ(f(A)))]. Since fisa N _ob* go —continuous mapping
and N ab*gx-Cl[ f(4)] is a N, ob* g ~closed set. Thus
N ab* g Cl| f7 (N ab* qx CI(f(4))) = f7[N ab*axCI(f(4))].  Hence,
fIN ab* g -Cl(4) | N ,ab*gx ~Cl| f(4)].

Conversely, let /[N ,ab*gu -CI(A4)]< N ,ab*gx~CI[ f(A4)], foreach N, -set 4 in X. Let
Fbea N, ~closed setin Y. Then N ab* qu~Cl| f(f™(F))| €N ,ab* o -CI(F)=F. By
assumption, /| N ab* g ~CI(f7 (F))| €N ,ab*qu~CI| f(f(F))|<F and hence
N ab*gu-CI[ £ (F)|< /' (F). Since [ (F)en ab* g -CI[ f7(F)],
N ab*gu ~Cl| f7 (F)]=f"(F). This implies that /™' (F)isa N, ab* g ~closed setin X.

Thus by Theorem 3.4, fisa N _ ob* goo —continuous mapping.

Theorem 3.6. Let (X,TN) and (Y, GN) be two N =Top =Spaces and f : X —Y be a mapping.
Then f is a N wab * g —continuous mapping if and only if
N ab*gx —Cl[f_1 (B)] cf [N wab™® g —CI(B)] forevery N , —set B in Y.

Proof. Let B be any N =sef in Y and f bea N, ab* gx—continuous mapping. Clearly
r(B)c /[N, ab* g -CI(B)]. Then, N, ab*gu ~Cl| 7 (B)|<
N, ab* g —Cl[f‘l (N ,ab* o —Cl(B))]. Since N ,,ab* g =CI(B) is N _,ab* go. —closed
set in Y. So by Theorem 34, /'[N ,ab*ga -CI(B)] isa N ,ab* g -cloed set in X. Thus,
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N ,ab*gu -Cl[ f(B)|=N ,ab* g -CI| f(N ,ab* g ~CI(B))]=

/[N ab*gu -CI(B)].

Conversely, N, ab* g CI| £ (B)|< f '[N ,,ab* g ~CI(B) | forall N, ~sets N ,, -set B
in Y. Let I/ bea N —closed setin Y. Since every N , —closed setis N , ab™ gor —cloedset,
N ab* g ~Cl[ f7(F)]c f7[N ab* gz -CI(F)]|= " (F). This implies that ' (F) is a
N ab* g —cloed setin X. Thus by Theorem 3.4, f isa N , ab* g —continuous mapping.

Theorem 3.7. Let (X, TN) and (Y, O'N) betwo N, -Top -Spaces and f: X —Y be abijective
mapping. Then f is N _,ab* go. =continuous if and only if
N, ab*gx —Int[f(A)] - f[N Lab* g —Int(A)] forevery N, -set A in X.

Proof. Let 4 beany N , =sef in X and f be a bijective and N _ ob™* goi —continuous mapping.
Let f(A)=B. Clearly 1~ [N ab* g -Int(B)|< f~'(B). Since fis an injective mapping,
f(B)=4, 50 that f[N ab*go -Int(B) | < A. Therefore,
N ab*gu ~Int| f (N ,ab* gz ~Int(B)) |S N ,ab* gor ~Int (A). Since  f is
N ,ab* gou—continuous, /'[N ,ab* g -Int(B)] is N ab*gu-open set in X and
SN Lab* g -Int(B)]c N ab*gu-Int(4),  f|f7(N,ab*gx-Int(B))]c
[N ab* g ~Int(A)]. Therefore N, ab* go ~Int[ f (A)]< [N, gsa*nt(4)].

Conversely, N, ab* gur ~Int| f(A4)|< f[N ,ab* gor ~Int(A) | forevery N, =set A in X. Let
V bea N, —openset in Y. Then VisN  ab*go-openset in Y. Since fis surjective and so
V=N ab* gz -Int(V)=N ,ab*ga-int| f(f(V))| < [N ab* gu=int(f (V)] n
follows that /' (V)< N ,ab* g ~Int[ f7 (V)] Therefore /™' (V) isN ,0b* gor -open  set in

X. Hence fisa N _ab™* go —continuous mapping.

Theorem 3.8. Let (X, TN) and (Y, (TN) betwo N, -Top -Spaces and f : X —Y be a mapping.
Then f is a N, ab * go. —continuous mapping if and only if
f [N Wb * o —Int(B)] C N _ ab*gx —Int|:f_1 (B)] foreveryN , —set B inY.

Proof. Let B be any N, =sef in ¥ and f be a N _ab™go —continuous mapping. Clearly
f[N ab* g -Int(B)|< f7'(B) implies N, ab*o —Int[f’1 (N ,ab* g —Int(B))] c
N _ab* oo —Int[f‘1 (B)] Since N ,ab* g -Int(B) is N _ob*go-opensetin ¥ and f is
N ob* go —continuous, £ [N Lob* o -Int(B)] is N _ob*go-open set in X. Therefore
N ab* g ~Int| f (N ,ab* gu ~Int(B)) | < /'[N ,ab* go-Int(B) | <

N, ab* g —Int[f"1 (B)]
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Conversely, '[N, ab* gz ~Int(B)|= N ,ab* g ~Int[ f ' (B)] for every N, =set B in Y.
Let G be any N ,, —open set in Y. Then f(G)=
[N ab* g -Int(G) | SN ab*gu=Int| f(G)]  and  therefore  f7(G)=
N ab* g =Int| f7(G)]. This implies that f~'(G) is N ,ob* go—open st in X. Hence f isa

* ; :
N euOtb goL —continuous mapping.

Theorem 3.9. Let (X,TN) and (Y, O'N) be two N —Top -Spaces and f : X —Y be a bijective
mapping.  Then f is a N _ob*go-continuous mapping if and only if
f[N LOb* o —Fr(A):' C N _ ab*ox —Fr[f(A)] forevery N , -set A in X.

Proof. Let [ be abijective and N _ otb™* goi —continuous mapping. Let 4 bea N ,, =sef in X. By
definition, N , ab* gor =Fr(A)=N ,ab* g -CI(A)NN ,ab* qu —CZ(AC). By Theorem 3.7,
N ab*gu -Int[ f(A)]c f[N ,ab*ga-Int(4)] and from Theorem 3.5,
SN ab*gx-Cl(A) | N ,ab* g ~CI| f(4)],

f[N Lab* ao —Fr(A):I = f[N ab* —Cl(A)]ﬂf[N Wb * gt -CI(AC)] c

N ab*gu ~CI[ f(A)]N N ab* o ~CI[ f(4)] =N ,ab* o -Fr[ f(4)]

Conversely, /[N ,ab* g ~Fr(A4)]|< N ,ab*gx -Fr| f(A)]forevery N, =set A in X. Then
N ab* g -Cl(A)|=f[N ,ab*gu-Int(A) |U | N ,ab*gx-Fr(4)]c

f(A)UN ab*gu~Fr| f(4)] N ,ab*aa-CI[ f(4)]. By Theorem 35, f is a

* ; :
N ob* go. —continuous mapping.

Theorem 3.10. Let (X,TN) and (Y, GN) betwo N, -Top -Spaces and f: X — Y be a bijective
mapping.  Then f is a N euOLb* g —continuous  mapping if and only if
N ab*gx —Fr[f"] (B)] cf! [N wab® o —Fr(B)] forevery N ,, =set B inY.

Proof. Let f be a bijective and N , ob™ go. —continuous mapping. Let B be a N, =sef in Y. By
Theorem 3.6, N ab*gx -Cl I:f_' (B):l cf [N Wb ™ o —CZ(B)]. Therefore we obtain

[N ab* gz -Fr(B)]= ' [(N wab* o ~CI(B))NN ,,ab* —CI(BC)] =
SN ab* g -CI(B)]N £ N ab*ax CI(B) | 2

N ab* gu-CI[ £ (B) NN ,ab* gz ~CI| £ (BC)|=

N ab* o ~CI[ £ (B)|NN ,ab* o -cz{( s (B))C} —n ab*ax-Fr[ 17 (B)]
Therefore N , ab™* g —Fr[f_' (B)] cf [N wab™® oo —Fr(B)].
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Conversely since N , ab* go —Fr[fﬁ1 (B)] f [N ab* gu —FV(B):I for every N ,, —set B in
Y. This implies that N , ab* gor =CI [ff ( )} cf [N o700 o' —CI(B):I. By Theorem 3.6, f is

a N _ ob* go. —continuous mapping.

Definition 3.11. Let Xt

is called neutrosophic neighbourhood (N . ~heighbourhood ) of X,
€ Bc A.

ybea N, —-point ofa N , -Top -Space (X,TN). AN -set A of X
) if there exists a N , —open set

B such that Xir1)

Theorem 3.12. Let fbe a mapping from a N, -Top -Space (X ,TN) to a N, -Top =Space
(Y ,Oy ) Then the following assertions are equivalent.

(i) fis N ,ob*go-continuous.

(ii) For each N, —point x,, € X andevery N o —heighbourhood A of f ( (s ) there exists

r,t,s

a N  ob*go—-open set B such that Xiris) € Bc f ( )

(iii) For each N , —point X € X and every N, -neighbourhood A of f( rits ), there

,1,8)

existsa N _ob™*go-open set B in X such that x ris) € B and f( )g A.

Proof. (i)= (ii): Let X(uq €X bea N —pointin X andlet 4 bea N, -neighbourhood of
f(x(r’m)). Then there exists a N , —open set B in Y such that f(x(ms))eBg A. Since fis
N, 0b* go —continuous, we know that f~ (B) is a N _ab*gou-open set in X and
X5 € /! (f(m,s)) cf! (B) cf (A) This implies (ii)is true.

(i) = (iii): Let x,,,
The condition (ii) implies that there exists a N _ob*go-open set B in X such that

X €EBS S '(A4).Thus X(r1s) € Band f(B)gf[f‘1 (A)]gA. Hence (iii)istrue.
(111):>( ) Let B bea N , -open setin Y and let Xir1) ef ( ) Since B is N, -open set,

bea N —point in X andlet 4 bea N, -neighbourhood of f ( () )

f(x(rjm)) € B, andso Bis N , -neighbourhood of f( . ) It follows from (iii) that there exists

a N,ob*gu-open set A4 in X such that x, €A and f(A) CB so that
Xiis) € Ac [ I:f(A):I cf (B) This implies by definition that f71 (B) is a

N ,0b* goo —open setin X. Therefore, f/ isa N _ob™ go. —continuous mapping.

4 Neutrosophic ab * oo -Irresolute Mappings
In this section, we introduce the concept of neutrosophic N  ab* g —irresolute

(N euch*QOL—iI’resolu‘[e) mappings in N, -Top =Spaces. Also, we discuss the relationship of

N ob* go —irresolute with N _ ob* gou —continuous mappings.
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Definition 4.1. Let (X,TN) and (Y, GN) be two N, -Top -Spaces. A mapping f: X —7Y is
called N ,ob*go-irresolute if the inverse image of every N ab*gu-open set in Y is
N ,ob*go —open in X.

Theorem 4.2. Let (X,TN)and (Y, O'N) be two N -Top -Spaces. A mapping [ : X —Yis
called N _ob* gol -irresolute if the inverse image of every N ,oab*goi—closed set in ¥ is
N ,ob* goo —closed in X.

Proof. Let 4 beany N ,ab*go—closed setin Y. Then 4° is N _ab* gou-open setin Y. Since
f s N _ab* go -irresolute,  f (AC) is N _ob*go-open set in X and
S(A°)=[ 7 (4)] which implics that £ (4) is N, ob* got ~closed setin X.

Conversely, Let B be any N _ob* go —openset in Y. Then B is N ,ab* go —closed set in Y.
Thus £ (B) is N ob*gou—closed set in X and f~'(B)=[ /" (B)]thich implies that

7 (B) is N ,ob*go-open setin X. Hence f: X —Yis N ab™ go —irresolute.
Theorem 4.3. Every N _ ab™* go -irresolute mapping is N _ ob* gor —continuous.

Proof. Let V' bea N o TOpen setin Y. Since every N, —open setis N _ob™* go -open, Vois
N ,ob*go —open. Since f is N, ab* gou -irresolute, 7! (V) is N _,ob*go-opensetin X.

Therefore f is N _ ob* gow —continuous.

Theorem 4.4. Let f . (X ,T N) — (Y ,O N) be a mapping. Then the following assertions are equivalent:
(i) f is N ,ab* go irresolute.

(il) N, ab* g —Cl[fﬁ1 (B)] cf I:N o700 0 —CI(B):I forevery N =set B of Y.
(iii) f[N Lob* oo —CI(A)] CN _ab*gx —Cll:f(A)] forevery N , —set A of X.
(iV) ! [N w0b* o —Int(B)] CN _ ab*gx —Int[f'1 (B)] forevery N , —set B of Y.

Proof.(i)=(ii): Let B be any N -set in Y. Then N ab*gu-CI(B) is
N ,0b*go —closed setin Y. Since f is N ob*go -irresolute, /'[N ,ab*gu ~CI(B)] is
N ob*go—closed set in X. Then N _ab*gx —Cl[f’1 (N ,ab* g —CI(B))] =
[N ,ab*a~CI(B)].  Clearly it follows tha N ,ab*gx-CI| f"(B)]|c
N ab*auCl| (N ab*ax ~CI(B))]= '[N ,ab*gx-CI(B)]. This proves (ii).

(il)=(iii): Leet A4 be any N, -se¢ in X. The f(4)cY. By
(i), N ab* g Cl] £ (f(4))|< £ [N ab*gu -CI(f(4))]..(*). Now we observe that
Ac f7(f(A4)) implies that N, ab* g ~CI(A) S W, ab* gor =CI[ £~ (f (A4)) ]..(**).  Then
(*) and (**) implies that N, ab* gor ~CI(A) < ™[ N, b * g ~C( f (A)) | which implies that

285



International Conference on Basic Sciences and Technology (ICBAST), August 28 — 31, 2025, Budapest/Hungary

SN wab* g Cl(A)] £ (/[N ab* o ~CI(f(4))]) SN ab* g ~CI[ f(4)]. Thus,
SN ab*gx -Cl(A) | N ,ab* gz ~CI[ f(A)]. Hence, (ii) = (iii) is proved.

(iii)=(i): Lee F  be any N_ab*go-closed set in Y.  Then
SUF)=f [N ab*m-Cl(F)]. By (i),  f]N,ab*om-CI(f"(F))|<
N ab* o -Cl[ f(/7(F))|e N ab* g -CI(F)=F. Then That implics
N ab*gx-Cl| f7(F)|< f(F). But [ (F)eN ab*q=CI[ [ (F)].

N ab* g —Cl[f‘1 (F)] =/ (F) andso [T (F) is N ,ob*go —losed st in X. Therefore
fis N ob* gou -irresolute.

(i)=(iv): Let B be any N, -set in Y. We know that N _ab*gu-Int(B) is
N ,ab*go-open setin Y. Since f is N ob*go-rresolute, /'[N ab* gu -Int(B)] is
N _,ob* go. —open set in X. Then [N ab*gu -Int(B) | =
N ab* o —Int[f_l (N wab™® g —Int(B))] C N, ab*ox —Int[f_] (B)]

(iv) = (i): Let V' be any N _ob*go-open set in Y. Then by (iv),
[ V)=r"[N ab* g -Int(V)] < N ab*gu-Int[ f7 (V)] Bu, we  have
N ab*gu-Int| [ (V)] (V). N ab*qu-Int| f7(V)]=f" (V) and hence [~ (V')
is N ,ob*go-open. Thus f is N, ob™* gou —irresolute.

Theorem 4.5. 1t /:(X,T,)—>(Y,0,) and g:(Y,0y) > (Z,ny) are N, ob* go —irresolute,

then their composition g0 f : (X ,T N) - (Z , 77N) isalso N _ ob* go —irresolute.

Proof. Let V be a N _ob*go-open set in Z. Since g is a N ob* go -irresolute mapping,

g (V) is N_ob*go-open in Y. Since f is a N ob*go -rresolute mapping,

[ [g_l (V)] = (gof)f1 (V) is N ob*gu-open in X. Therefore gof s
N ,,ab* go —irresolute.

Theorem 4.6. 1t :(X,T,)—>(Y,0,) is N  ob*go-irresolute and g:(Y,0y)—>(Z,ny)
is N ,0b* go —continuous, then their composition gOf : (X, TN) - (Z,I]N) is also

x .
N ,,ab* go. —continuous.

Proof. Let V be a N, —openset in Z. Since g is a N _ob* go—continuous mapping, g’ (V)

is N _ob*gou-open set in Y. Since f is a N ob*go-irresolute mapping,

f [gil (V)] = (gOf)_l (V) is N ob* go —open in X. Therefore gof s
N ,,ab* go. —conrinuous.

5 Neutrosophic ab * go. —Closed Mappings and Neutrosophic ab * go. -Open Mappings
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In this section, we introduce neutrosophicab* gou = closed (N L ob* g —closed) mappings and
neutrosophic ob* goL = open (N w0b* ool —open) mappings in N =Top =Spaces and obtain certain
characterizations of these classes of mappings.

Definition 5.1. Let (X,T,) and (Y,0y) be two N, ~Top-Spaces. A function

f: (X,TN) - (Y, O'N) is said to be N ab™ gou —closed if the image of each N _, —closed setin X
is N _,ab*go —closed in Y.

Definition 5.2.  Let (X , T N) and ( Y,o N) be two N _ -Top-Spaces. A function
f:(X,TN) - (Y,O'N) is said to be N _ ab™ gou —open if the image of each N, —open setin X is
N ,ab*go —losed in Y.

Theorem 5.3. A function f:(X,T,)—>(Y,0y)is said to beN ,ob*go —closed if and only if
N ab*gx —Cl[f(/l)] c f[N euCl(A):I forevery N, —set A of X.

Proof. Suppose f:(X,T,)—>(Y,0,) isa N ,ab*go~closed function and A4 isany N , -set in
X. Then N ,CI(A) is a N  ab*go—closed set in X. Since f is N _ab*go —closed,
fln,cr(4)] is a N, ob* go —closed set in Y. Thus
N ,ab* g ~Cl| f(N ,Cl(A4))]=f[N ,Cl(4)].  Therefore N ,ab* g -CI[ f(4)]<
N ,ab*gu ~Cl[ f(N,CI(4))|=f (N ,CI(4)).  Hece N ,ab*q-CI[f(4)]c
7 ().

Conversely, let A bea N —closed setin X. Then N, CI(A)=4 andso f(d4)=f[N ,CI(4)].
By our assumption N ,,ab* gor CI| f (4)] < f(4). But f(A)= N ,ab*gu -CI[ f(A)]. Hence
N ab* g Cl| f(A4)]= f(4) and therefore f(4) is N ,ob* go—closed setin Y. Thus f isa
N ab* go —closed mapping.

Theorem 5.4.. A mapping f:(X,TN)%(Y,UN) is N _ob*go—closed if and only if for each
N, -set W of ¥ and for each N, -open set U of X containing f - (W) there exists a
N _,ob* go —open set V of ¥ such that W <V and [~ (V) cU.

Proof. Suppose f isa N ob™*go —closed mapping. Let W be any N ., =set in ¥ and U be a

N ., ab* gou-open set of X such that f~ (W) U. Then V = [f(U")] is N ob* gou—open set
containing W such that f' (V) cU. Conversely, let W be a N —closed set of X.Then

[ [(f(W))C:| C W and W is N —open in X. By assumption, there existsa N _ ab™* go —open

set V' of Ysuch that I:f(W)]ch and fﬁl(V)C;WC and so ng:f_l(V)T.Hence
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e gf(W)gf[(fl(V))c}ch, which  implies  f(W)=V°.  Since Ve s

N ob*go—closed, f (W) is N ,ob*go—losed and f is N ,0b* gou —closed mapping.

Theorem 5.5.Let f: (X,TN) —)(Y,O'N) be a N —closed mapping and g: (Y,O'N) - (Z,UN)be a
N ab* go —closed mapping.  Then  their  composition gof: (X,TN) - (Z, 77N) is
N, ob* go —closed.

Proof. Let Fbea N —closed setin X. Since f is N, —closed, f(F) is N, —closed in Y.
Since g is N ,ab*go —losed, g[f(F)] = (gof)(F) isN  ab*go —closed in Z. Hence
gofisa N _ob*go —closed mapping.

Theorem 5.6. Let f:(X,TN) —)(Y,O'N) and g:(Y,O'N) - (Z,?]N) be two mappings such that their
composition gof : (X R TN) - (Z , 77N) is N, ab™* gou —closed. Then the following statements are true.
(i) If fis N —continuous and surjective, then g is N _ ab™* go —closed.

(ii) If gis N ab™ go -irresolute and injective, then f is N ab™* gou —closed.

Proof. (i) Let 4 be a N —closed set of Y. Since f is N -continuous, /™ (4) is
N, —closed in X. Since gof is N ,ab* go—closed, (gof)(f™'(4)) is N ,,ab* gu ~closed in
Z. Since f is surjective, g(4) is N ,ab* goo —closed in Z. Hence g is N ab* go —closed.

(ii) Let B be any N, —closed set of X. Since gof is N ab*go —closed, (gOf)(B) is
N ,ab*go —closed in Z. Since gis N , gso*Hrresolute, g~ (gof(B)) is N, ob* go —closed
in Y. Since g is injective, f(B)is N ,,0b* goo —closed in Y. Hence f is N _ob* goo —closed.

Theorem 5.7. Let f: (X,TN) —)(Y, GN) bea N _ ab* go —closed mapping.

(i) If 4is N, —closed set of X, then the restriction f,:4—Yis N ab™* go —closed.

(ii) If A=f" (B)for someN . —closedset Bof Y,then the restricion f,:4—>Yis
N ob* go —closed.

Proof. (i) Let B beany N, —closed set of 4. Then B = A F forsome N ,, —closed set F of X
and so B is N —closed in X. By hypothesis, f(B) is N ,ab*go~closed in Y. But
f(B)=f,(B), therefore f, isa N ob* go —closed mapping.

(ii) Let Dbeany N, —closed set of A.Then D= AN H for some N _, —closed set H in X.Now,
fi(D)=f(D)=f(ANH)=f[f"(B)NH |=BNf(H).Since fis a N ,ab*go~closed
mapping, so f (H) isa N ,ob* go~closed setin Y. Hence f, isa N ,ob* go —closed mapping.

Theorem 5.8. A function f:(X,TN)—)(Y,GN) is N _ob*go-open if and only if
f[N eulnt(A):I CN, ab*qx —]ntl:f(A):', forevery N _ -set 4 of X.
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Proof. Suppose f:(X,T,)—(Y,0,) isa N, ab*go-open function and A is any N =set in
X. Then N, Int(A) isa N, -open setin X. Since f N ,ob*gu-open, f[N Int(A4)]isa
N, ob*gu-open set. Since N, ab*gu-Int| f(N ,Intd)|SN ,ab* g -Int[ f(4)],
fIN  nt(4) | N ab* g -Int] f(4)].

Conversely, [N, Int(A)]< N ,ab*gu-Int| f(A)] for every N, =set 4 inX. Let U be a
N, -open setin X. Then N, Int(U)=U and by hypothesis, /(U)<= N ,ab*gu -Int| f(U)].

But N ab*oqx —[nt[f(U):I c f(U).Therefore, f(U)=N ,ab*qu —Int[f(U):I. Then f (U)
is N euOLb”< go.—open. Hence fisa N ellOLb>’< QoL —Open mapping.

Theorem 5.9. A function fI(X,TN) - (Y, O'N) is N oab*go-openif and only if for each

Xr.5.0) €Xand for each N, -neighbourhood U of X(r5.0) in X, there exists a

N, ob* go -neighbourhood W of f (x(r’syt)) in ¥ such that W < f(U).

Proof. Let f: (X,TN) - (Y, O'N) bea N _ob* gou—open function. Let X, €X and U be any

arbitrary N, -neighbourhood of x, , in X. Then there exists a N ., -open set Gsuch that
v €GCU. By Theorem 58, f(G)=f[N Int(G)|cN ab*gu-Int[ f(G)]. But
N ab* g -Int] f(G)]< f(G). Therefore, N ,ab*gu-Int[ f(G)]|=f(G) and hence
f(G) is N ab*go-open in Y. Since X, €G U, f(x(m,t)) € f(G)< f(U) and so the

result follows by taking W = f (G)

X

Conversely, Let Ube any N _ —open set in X. Let Xirsa) € U and f(x(rst)) = Vikdm): Then by

assumption there exists a N euocb*goc—neighbourhood Wiy of Ykt.m) in Y such that

i)

w
(eam)

N ,ob*go —openset V
(ywm))

gf(U). Since W,

there exists a
(y(k,[.m)

k,l,m) ’

) is a N ab*go-neighbourhood of

W,

in Y such that y(k,z,m) eV (y(k[ ))

Therefore,
(esm)

F(U)=Uir

B ):y(klm) Ef(U) . Since the union of N ,ob*go -open sets is
(k.2.m) »

N ob*gu-open, f(U) isa N _ob*go-open setin Y. Thus, f isa N _ob*go-open
mapping.

Theorem 5.10. For any bijective mapping f : (X ,TN) - (Y ,O N) the following statements are
equivalent:

(i) /Y > Xis N ,ob* gu —continuous.
(ii) fis N ,ab*go -open.
(iii) fis N, ab*go—closed.
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Proof. (i)=> (ii): Let Ube a N, -open set in X. By assumption, (f‘l)_1 (U)=f(U) is
N ,ob*go-open in Yandso fis N, ab™* go-open.

(ii) = (iii):Let Fbe a N, —closed set of X.Then Fis a N, —openset in X. By assumption
f(F¢)is N ,ab*go-open in Y. But f(F°)=[ f(F)] . Therefore f(F)is N ,0ob* go ~closed set
in Y. Hence, fis N ,0b* go —closed.

(iii) = (i): Let Fbea N —closed set of X. By assumption, f(F)is N ob*go —closed setin Y.

-1
But f(F) = (f_l) (F) and therefore by Theorem 3.4, f':Y — Xis N _ ab* go. —continuous.

6 Strongly Neutrosophic ab * go. -Continuous Mappings and
Perfectly Neutrosophic ab * go. —Continuous Mappings
In this section, we introduce and study the concepts of strongly N _ob™ go—continuous and perfectly

N ,ob™* goo —continuous mappings in N, =Top —Spaces.

Definition 6.1. A mapping f : (X,TN) - (Y, Oy ) is called strongly N euOLb* goL —continuous if the

inverse image of every N euOLb* goL-open setin Yis N —-open in X.

Definition 6.2. A mapping f : (X ,TN) - (Y ,O N)is called perfectly N _ ob™* go —continuous  if

the inverse image of every N _ 0b™ got —open setin Yis N ., —clopen in X.

Theorem 6.3. Let [ : (X , T N) - (Y Oy ) be a mapping. Then the following statements are true:
(i) If f is perfectly N euOtb * 00} —continuous, then f isperfectly N -continuous.

(ii) If f is strongly N _ ab™ goo —continuous, then f is N, —continuous.

Proof. (1) Let f: X —>Y be perfectly N ob* goL—continuous. Let V' be a N o —OPEN set in
Y. Then V is N _ob™*goi-open setin Y. Since f is perfectly N, ab™ gor —continuous, [ (V)
is N, —clopen in X. Hence f is perfectly N -continuous.

(ii) Let f: X =Y be strongly N ob* gou—continuous. Let G be a N, —open set in Y. Then
G is N _ob*ogo-open set in Y. Since fis strongly N  gsa*-continuous, 7 (G) is

N, -open in X. Therefore fis N ,, —continuous.

Theorem 6.4. Let f: X =Y be strongly N ab™ gou —continuous and 4 be N, -open setin

X. Then the restriction map, f,: A —> Y is strongly N , ab™* go. —continuous.

Proof. Let ¥/ be any N _ob*go-openset in Y. Since f is strongly N _ gsa* -eontinuous,
(V) isN, —openin X. But f;' (V)=ANSf"'(V). Since 4 and f7' (V) are N -open,

fi'(V)is N, —open in A. Hence f, isstrongly N, gsoL* -continuous.
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Theorem 6.5. Every perfectly N euOLb * gou —continuous  mapping f : ( X, T N) - (Y ,O N) is strongly

N :
N ,,ab* go. continuous.

Proof. Let f: X —7Y be perfectly N ob™ got —continuous and v be N _ ob* gou —open set in
Y. Since f is perfectly N euOLb*gOL—COIlﬁIIUOUS, f71 (V) is N —clopen in X. That is both

N, -open and N _, —closed in X. Hence f isstrongly N ., 0b™ go. —continuous.

Theorem 6.6. If fZ(X,TN)—>(Y,O'N) and g:(Y,O'N)—)(Z,I]N) are  strongly
N euOLb * gou —continuous, then gof : (X,TN) - (Z,T]N) is also strongly N _ ob™ gow —continuous.

Proof. Let V' bea N _ -open setin Z. Since g is a strongly N ,ob* go. —continuous mapping,
g_1 (V) is N _ -open in Y. Then g’ (V) is N -open in Y. Since f is a strongly
N, ab* go ~continuous mapping, f ' [ g (V)] =(gof)" (V) is N, -openin X. Therefore,

g0 f isstrongly N _ob* go. —continuous.

Theorem 6.7. 1t f:(X,Ty)—>(Y,0y) and g:(Y,0,)>(Z,ny) are perfectly
N euch* goL —continuous mappings, then their composition gof : (X,TN) - (Z,T]N)is also perfectly

* 1 .
N ,,0b™* go —continuous mapping.

Proof. Let V' be a N _ob*gon-open setin Z. Since g is a perfectly N , gso™* -eontinuous
mapping, & (V) is N, —clopen in Y. Thatis g (V) both N, -open and N, —closed in X.

Then g~ (V) is N ob*go-open setin X. Since fis a perfectly N, gso* continuous mapping,

/! [gfl (V)] = (gof)i1 (V) is N_ —clopen in X. Therefore gofis  perfectly

N .
N, ab* go. —continuous.

Theorem 6.8. Let f: (X,TN) - (Y, O'N) and g: (Y, (TN) - (Z,?]N) be mappings. Then the
following statements are true.

(i) If g is strongly N _ob*go—continuous and f is N _ob* go —continuous, then gOf is
N ,ob* gou —irresolute.

(ii) If g is perfectly N euOtb * gou —continuous and fis N ., —continuous, then gof is strongly
N ., ab* go. —continuous.

(iii) 1f g is strongly N ,ab* go—continuous and £ is perfectly N, otb* gow ~continuous, then gof
is perfectly N _ ob* go. —continuous.

(iV) If g is N_ob*go—continuous and f is strongly N ,ob*go—continuous, then gof is

N _, —continuous.

Proof. (1) Let V' bea N ab*ogo-open setin Z. Since g is a strongly N _ob* go —continuous
mapping, g’l (V)is N, -open set in Y. Since fis a N _ob*go-continuous mapping,
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[ [gfl (V):I = (gof)_l (V) is N _ob*gou-open set in  X. Hence gof s
N ,,ab* go -irresolute.

(ii) Let V' bea N ab*go-opensetin Z. Since g is a perfectly N, ob* go —continuous mapping,
g (V)is N _, —clopen sct in Y. Thatis, g~ (V) isboth N, —open and N ., —closed. Since fis a
N ,,0b* go. —continuous mapping, [~ [g_l (V)] =(gof )_1 (V) is N, -open in X. Therefore gof
is strongly N _ ob* go. —continuous.

(iii) Let V' bea N ,ab*go—open setin Z. Since g is astrongly N, ab* go —continuous mapping,
gfl (V) is N, -openset in Y. Since every N , —open setis N euOLb* QoL =open set. So gil (V) is
N ob*go-open set in X. Since f is a perfectly N _ob*go—continuous mapping,
[ [g71 (V):I = (gof)_l (V) is N, —<lopen in X. Hence gofis perfectly
N, ab* go. continuous.

(iV) Let V' bea N -open setin Z. Since g is a N ,ab™ go —continuous mapping, gil (V) is
N ob*gou-open set in Y. Since f is a strongly N _ob*go-continuous map,

[ [g*I(V)] :(gof)_1 (V) is N, —open in X. So gof is N, —continuous.

7 Contra Neutrosophic ab * go —Continuous Mappings
and Contra Neutrosophic ab * oo -Irresolute Mappings
In this section, we introduce the concepts of contra N euOtb* goL —continuous mappings and contra

* _' . . . . . . .
N euOLb gou —irresolute mappings and investigate their fundamental properties and characterizations.

Definition 7.1. A mapping [ :(X ,TN) —>(Y , O'N) is said to be contra N  —continuous if the

inverse image of every N _ —open setin Yis N —closed setin X.

Definition 7.2. A mapping [ : (X ,T N) - (Y , O'N) is called contra N _ ab™ gol —continuous if the

inverse image of every N _ —open setin ¥is N ,ab* go —closed in X.

Theorem 7.3. Let f :(X ,TN)—>(Y ,O'N)be a contra N _ -continuous mapping. Then [ is contra
% )
N, ab* go. —continuous.

Proof. Let V' be any N -open set in Y. Since [ is contra N . —continuous, /' (V) is
N, —closed set in X. As every N —losed set is N ,ob*go—closed, we have f7' (V) is

N ,ob™*go —closed setin X. Therefore f is contra N _ ob™ gow —continuous.

Theorem 7.4. A mapping f :(X,Ty)—(Y,0,) is contra N, otb* go ~continuous if and only if

the inverse image of every N, —closed setin Y'is N  ab™ go. —open setin X.
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Proof. Let V' be a N —closed setin Y. Then V' is N, -open set in Y. Since f is contra
N, ab* gow —continuous, f ' (VC) is N, ob*go—closed setin X. But [ (VC) =1-77'(V)
and so [ (V) is N _ob*go-open set in X. Conversely, assume that the inverse image of every
N, —closed setin ¥ is N _ab*go-open in X. Let W bea N -open setin Y. Then W< is
N, —closed in Y. By hypothesis [~ (WC) =1-f" (W) is N ab*ogo-open in X, and so

F7'(W)is N ,ab* gou —closed set in X. Thus f is contra N, gso* -continuous.

Theorem 7.5. If a mapping [ :(X ,TN)—>(Y , O'N) is contra N _ab™*go—continuous and
g:(Y,0,)>(Z,ny) is N, —continuous, then their composition gof:(X,T,)—>(Z,n,)is

* .
contra N _ ob* gou —continuous.

Proof. Let W baa N, -open setin Z. Since g is N, —continuous, g' (W )is N -open set

in Y. Since f iscontra N , ob* go. —continuous, f [g_l (W)} is N , ab*go —closed setin X.

But (gof)” (W)= /™ [g“ (W)] Thus gof is contra N atb* gou —continuous.

Definition 7.6. A mapping f:(X,TN)%(Y,GN) is called contra N _ ab™ gou—irresolute if the
inverse image of every N eu()Lb>X< go.-open setin Yis N, ob™* go —closed in X.

Theorem 7.7. If a mapping [ :(X ,TN) —)(Y , O'N) is contra N _ ab™ gou —irresolute, then it is

* .
contra N _ ab* go. —continuous.

Proof.Let V'be a N -open set in Y. Since every N _ -open set is N ab*go-open, V is
N, —opensetin Y. Since f is contra N ab™* go -irresolute, /' (V) is N ,ab™* go —closed set

in X. Thus f is contra N _ ab™ gow —continuous.

Theorem 7.8. Let (X,T, ), (Y,O'N) and (Z,77,) be N, ~Top -Spaces. If f:(X,TN)—>(Y,O'N)
is contra N, otb* gou-irresolute and g:(Y,0,,)—>(Z,7,) is N ,ob* go—continuous, then

gof:(X,T,)—>(Z,ny)is contra N ob* go ~continuous.

Proof. Let W be any N -open setin Z. Since g is N ,ob*go—continuous, g~ (W )is
N ob*go-open set in Y. Since f is contra N _ab™go -rresolute, £ [gfl (W)] is
N ,ob* oo —closed set in X. But (gof)fl (W) =1 [g_l (W)] Thus gof is contra

— .
N ,,0ob™* go —€ontinuous.

Theorem 7.9. it f:(X,T,)—(Y,0y) is N ,ob* go -irresolute and g:(Y,0,)—(Z,ny)
is contra N _ ab™gol-irresolute, then their composition gof: (X , TN) - (Z ,UN) is contra

%k — :
N, ob* gou -irresolute mapping.
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Proof. Let W be any N  ab™*go-open setin Z. Since g is contra N ,ob™* gou -irresolute,
g'(W)is N ab*go—closed setin Y. Since f is N ,ab™* go -irresolute, £ [g*I(W)] is
N ab*go —closed set in X. But (g0jf)71(1/17)=f_l [g_l(W)]. Thus gof is contra

N, ob™* go —irresolute.

Conclusion

In this research article, we have introduced and studied the properties of N _ ab* go. —continuous functions,
N ob* go -irresolute functions, N gso ™ <€losed functions, N ,ob™ go—open functions, strongly
N ,,ob* go. —continuous  functions, perfectly N _ ob* go —continuous  functions,  contra

. i . . o o
N, ob* go. —continuous functions, and contra N _ ob* gou —irresolute functions in N, =Top =Spaces

and established the relations between them. We have obtained fundamental characterizations of theses mappings
and investigated preservation properties. We expect the results in this article will be basis for further

applications of mappings in N , -Top -Spaces.

Recommendations

It is recommended to introduce N, ob* go. —compactness, N . ob* go —connectedness, N ob* go —regular
spaces, and N , ob* go. -normal spaces in N, =Top =Spaces and investigate their fundmental properties and

characterizations.
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