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Abstract: The increasing demand for high-performance power converters has led to the development of 

advanced control strategies that enhance system robustness against load variations. This paper presents a novel 

control approach for a 3×2 stacked multicellular inverter, integrating nonlinear feedback decoupling control with 

neural network - based regulators. Unlike conventional Proportional-Integral (PI) controllers, which struggle with 
parameter variations and dynamic uncertainties, the proposed neural network (NN) controller adapts in real-time 

to maintain system stability and optimal performance. The NN is trained to approximate the nonlinear control law 

while compensating for parametric variations and external disturbances. A comparative analysis between the NN-

based control and the traditional PI approach is conducted using MATLAB / Simulink simulations, evaluating 

response time, harmonic distortion (THD), and robustness against load changes. The results demonstrate that the 

NN-based controller significantly improves system adaptability, robustness and voltage regulation, making it a 

promising solution for modern power conversion systems.  

 

Keywords: Stacked multicellular inverter, Nonlinear feedback decoupling control, Neural network, Robust 

control  

 
 

Introduction 

 

The growing demand for efficient and reliable power conversion systems, driven by the rapid expansion of 

renewable energy integration, electric mobility, and advanced industrial drives, has placed multilevel converter 

topologies at the forefront of modern power electronics research (Akagi, 2017; Blaabjerg et al., 2013). Among 

them, the multicellular converters, where they are divided into three types namely the series, stacked and parallel 
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multicellular converters. The stacked multicellular converter (SMC) architecture has emerged as a promising 

solution due to its modularity, improved voltage quality, and enhanced fault tolerance (Meynard et al., 2002; 

Rodriguez et al., 2009). By generating multilevel voltage waveforms, SMCs achieve lower harmonic distortion 

and higher power quality, which makes them particularly attractive for applications such as smart grids, renewable 

energy systems, and high-performance motor drives (Kouro et al., 2010; Wu, 2006). 
 

Nevertheless, the control of multicellular converters topologies remains a challenging task because of their 

nonlinear dynamics, strong inter-cell couplings, and sensitivity to load and parameter variations (Bakeer et al., 

2022). Traditional control strategies, particularly Proportional–Integral (PI) regulators, remain widely adopted in 

industrial practice due to their simple structure and ease of implementation. However, their effectiveness is 

severely limited under dynamic uncertainties and varying operating conditions, often resulting in degraded 

performance and instability (Peña-Alzola et al., 2014). These challenges have stimulated the development of 

advanced control strategies capable of ensuring robustness, adaptability, and superior dynamic performance 

(Hanafi et al., 2016, 2021). 

 

In this context, nonlinear feedback decoupling control has been shown by Gateau et al. (1997) to be an effective 

approach for handling the coupling phenomena and complex dynamics inherent in flying multicellular converters. 
Building on this principle, Hanafi et al. have demonstrated the successful application of nonlinear feedback 

decoupling technique to control the stacked multicellular converter, achieving improved voltage regulation and 

enhanced stability in Hanafi et al. (2014). More recently, neural network (NN)-based approaches have been 

introduced to further enhance the control of multicellular converters, particularly in modulation strategies, where 

they have proven effective in improving robustness and adaptability (Hanafi et al., 2025). 

 

Artificial intelligence (AI)-driven control methods, and neural networks in particular, offer several advantages in 

power electronics. Their universal approximation capability and adaptive learning nature allow them to capture 

complex nonlinear dynamics and compensate for parametric uncertainties (Isidori, 1995; Haykin, 2009). 

Consequently, NN-based regulators have been successfully applied to multilevel converters for predictive control 

(Bakeer et al., 2022; Rivera et al., 2013) and adaptive regulation in renewable energy systems (Jiang et al., 2021). 
Despite these advances, limited research has addressed the combination of nonlinear feedback decoupling and 

neural network-based regulation in stacked multicellular converters, leaving open opportunities for performance 

enhancement in robustness, dynamic response, and power quality. 

 

To address this gap, this paper proposes a novel control scheme that integrates nonlinear feedback decoupling 

with neural network-based regulators for a 3×2 SMC converter. The proposed method leverages the strengths of 

nonlinear decoupling while exploiting the adaptive learning capabilities of NNs to ensure stable operation under 

parametric variations, load disturbances, and dynamic uncertainties. A comparative analysis with conventional PI 

controllers is performed using MATLAB/Simulink simulations, with evaluation metrics including transient 

response, total harmonic distortion (THD), and robustness to load variations. The results confirm that the NN-

based decoupling strategy provides superior adaptability, improved voltage regulation, and enhanced power 

quality, positioning it as a promising candidate for next-generation power conversion systems. 
 

 

Stacked Multicellular Converter 

 

 
Figure 1. A stacked multicellular converter 𝑃 × 2 powering an R-L load. 
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The stacked multicellular converter (SMC), first introduced in the early 2000s, is composed of 𝑛 stacks, each 

formed by a series connection of 𝑃 switching cells separated by (𝑃 − 1) floating capacitors. The SMC converter 

consists of a hybrid association of commutation cells (Figure 1). In the case of (𝑃 × 2) configuration, the structure 

consists of 𝑃 columns and (𝑛 = 2) stacks, resulting in (𝑃 × 𝑛) commutation cells and ((𝑃 − 1) × 𝑛) floating 

capacitors (Lienhardt et al., 2005). Such a topology is capable of generating ((𝑃 ×  2) + 1) voltage level. The 

upper stack operates exclusively during positive output cycles, while the lower stack is activated during negative 

output cycles. The modeling of the average behavior of a stacked multicellular converter relies on the following 

assumptions: 

 

 The switches are considered ideal, i.e., with zero saturation voltage, no leakage current, and negligible 

dead time or switching delay. 

 The two switches within the same commutation cell operate in a complementary manner. 

 The values of the floating capacitors 𝐶𝑖1 and 𝐶2𝑖 are such that the voltages at their terminals, 𝑉𝐶𝑖1 and 𝑉𝐶𝑖2 

are constants over a cutting period. 

 The load current 𝐼𝐿 is constant over a cutting period and corresponds to the average value of this one over 

the same period. 

 The DC supply voltage 𝐸 is constant. 

 

Under these assumptions, Equation (1) describes the dynamics of the floating capacitor voltages (𝑉𝐶𝑖1 , 𝑉𝐶𝑖2) in the 

two stacks, as well as the evolution of the load current 𝐼𝐿, when the stacked multicellular converter operates as an 

inverter supplying an R-L load: 

 

{
 
 
 
 
 

 
 
 
 
 
𝑑

𝑑𝑡
𝑉𝐶11 =

𝑆12 − 𝑆11
𝐶11

⋅ 𝐼𝐿

𝑑

𝑑𝑡
𝑉𝐶12 =

𝑆13 − 𝑆12
𝐶12

⋅ 𝐼𝐿

𝑑

𝑑𝑡
𝑉𝐶21 =

𝑆22 − 𝑆21
𝐶21

⋅ 𝐼𝐿

𝑑

𝑑𝑡
𝑉𝐶22 =

𝑆23 − 𝑆22
𝐶22

⋅ 𝐼𝐿

𝑑

𝑑𝑡
𝐼𝐿 = −

𝑅𝐿
𝐿𝐿
𝐼𝐿 +

𝑆11 − 𝑆12
𝐿𝐿

𝑉𝐶11 +
𝑆12 − 𝑆13

𝐿𝐿
𝑉𝐶12 +

𝑆21 − 𝑆22
𝐿𝐿

𝑉𝐶21 +
𝑆22 − 𝑆23

𝐿𝐿
𝑉𝐶22 +

𝑆13𝐸1
𝐿𝐿

+
(𝑆23 − 1)𝐸2

𝐿𝐿

 (1) 

 

 

Based on equation (1), it is possible to establish the state equation of the system: 

 

𝑋
•

= 𝐴 ⋅ 𝑋 + 𝐵(𝑋) ⋅ 𝑈 (2) 

 

The mathematical representation of the 3×2 SMC is given as follows: 

 

𝑋 = [𝑉𝐶11 𝑉𝐶12 𝐼𝐿 𝑉𝐶21 𝑉𝐶22 𝐼𝐿]𝑇 

𝑈 = [𝑆11 𝑆12 𝑆13 𝑆21 𝑆22 𝑆23]
𝑇 

 

 

𝐵(𝑋) =

(

 
 
 
 
 
 
 
 
 
 
 
−
𝐼𝐿
𝐶11

𝐼𝐿
𝐶11

0 0 0 0

0 −
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0 0 0
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𝑉𝐶12 − 𝑉𝐶11
𝐿𝐿

𝐸1 −𝑉𝐶12
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𝑉𝐶21
𝐿𝐿

𝑉𝐶22 −𝑉𝐶21
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𝐿𝐿

0 0 0 −
𝐼𝐿
𝐶21

𝐼𝐿
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0

0 0 0 0 −
𝐼𝐿
𝐶22

𝐼𝐿
𝐶22

𝑉𝐶11
𝐿𝐿

𝑉𝐶12 − 𝑉𝐶11
𝐿𝐿

𝐸1 −𝑉𝐶12
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𝑉𝐶21
𝐿𝐿

𝑉𝐶22 −𝑉𝐶21
𝐿𝐿

𝐸2 − 𝑉𝐶22
𝐿𝐿 )
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𝐴 =

(

 
 
 
 
 

0 0 0 0 0 0
0 0 0 0 0 0

0 0 −
𝑅𝐿
𝐿𝐿
−

𝐸2
𝐿𝐿 ⋅ 𝐼𝐿

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 −
𝑅𝐿
𝐿𝐿
−

𝐸2
𝐿𝐿 ⋅ 𝐼𝐿)

 
 
 
 
 

  

 

The load current is duplicated in the state vector 𝑋 in order to obtain a square matrix 𝐵(𝑋) of dimension 6 × 6, 

which makes it possible to compute its inverse for use in the subsequent control design. Since the vector 𝑋 

explicitly appears in the expression of 𝐵(𝑋) in matrix equation (2), the system exhibits nonlinear behavior. In 

addition, 𝐵(𝑋) is not a diagonal matrix: each input component (𝑆1𝑖 ,  𝑆2𝑖) simultaneously affects multiple state 

variables, and conversely, each state variable depends on several input components. Consequently, the system can 

be characterized as strongly coupled (Gateau et al., 2002). 

 

 

Hybrid Nonlinear Feedback Decoupling Control with Neural Network Regulators 
 

Nonlinear Feedback Decoupling Control 

 

Nonlinear feedback decoupling control enables the decoupling between system inputs and outputs while ensuring 

the stabilization of the floating capacitor voltages. From the model described in equation (2), it is possible to 

define a column matrix 𝛼(𝑋) and a square matrix 𝛽(𝑋) such that, by selecting the control input as 𝑈(𝑋) = 𝛼(𝑋) +
𝛽(𝑋). 𝑉, the closed-loop system exhibits linear behavior with complete decoupling between inputs and outputs 
(Aimé, 2003). From the matrix system: 

 

{𝑋
•

= 𝐴 ⋅ 𝑋 + 𝐵(𝑋) ⋅ 𝑈
𝑈 = 𝛼(𝑋) + 𝛽(𝑋) ⋅ 𝑉

  

 

By substituting the expression of 𝑈, we obtain: 
 

𝑋
•

= 𝐴 ⋅ 𝑋 + 𝐵(𝑋) ⋅ 𝛼(𝑋) + 𝐵(𝑋) ⋅ 𝛽(𝑋) ⋅ 𝑉 (3) 

 

The matrix 𝛼(𝑋) is defined in such a way that the product (𝐵(𝑋). 𝛼(𝑋)) fully compensates the term (𝐴. 𝑋). In 

addition, the matrix 𝐵(𝑋) remains invertible under the condition that: 

 

𝐼𝐿 ≠ 0      and      𝐸 ≠ 0 (4) 

 

Consequently, we choose: 
 

𝛽(𝑋) = 𝐵−1(𝑋) (5) 

 

Let: 

 

𝑉
•

𝐶11
= 𝑣11, 𝑉

•

𝐶12
= 𝑣12, 𝐼

•

𝐿 = 𝑣13, 𝑉
•

𝐶22
= 𝑣22, 𝑉

•

𝐶22
= 𝑣22, 𝐼

•

𝐿 = 𝑣23 (6) 

 

The matrixes 𝛼(𝑋) and 𝛽(𝑋) are given as: 

 

𝛼(𝑋) = −𝐵−1(𝑋). 𝐴. 𝑋 
 

𝛽(𝑋) = 𝐵−1(𝑋) 
 

 

According to the conditions defined in (4), the results of the decoupling computation are expressed in (7). 

 

𝐴 ⋅ 𝑋 = (0 0 −𝑏0𝑋13 − 𝑏1𝐸2 0 0 −𝑏0𝑋13 − 𝑏1𝐸2)
𝑇 (7) 
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𝐵−1(𝑋) =

(

 
 
 
 
 
 
 
 
 
 
 

𝑋11 − 𝐸1
𝑎11𝐸1𝑋13

𝑋12 −𝐸1
𝑎12𝐸1𝑋31

1

2𝑏1𝐸1
0 0

1

2𝑏1𝐸1
𝑋11

𝑎11𝐸1𝑋13

𝑋12 −𝐸1
𝑎12𝐸1𝑋13

1

2𝑏1𝐸1
0 0

1

2𝑏1𝐸1
𝑋11

𝑎11𝐸1𝑋13

𝑋12
𝑎12𝐸1𝑋13

1

2𝑏1𝐸1
0 0

1

2𝑏1𝐸1

0 0
1

2𝑏1𝐸1

𝑋21 − 𝐸2
𝑎21𝐸2𝑋32

𝑋22 −𝐸2
𝑎22𝐸2𝑋32

1

2𝑏1𝐸1

0 0
1

2𝑏1𝐸1

𝑋21
𝑎21𝐸2𝑋32

𝑋22 −𝐸2
𝑎22𝐸2𝑋32

1

2𝑏1𝐸1

0 0
1

2𝑏1𝐸1

𝑋21
𝑎21𝐸2𝑋32

𝑋22
𝑎22𝐸2𝑋32

1

2𝑏1𝐸1)

 
 
 
 
 
 
 
 
 
 
 

 (8) 

 

with: 

𝑎11 =
1

𝐶11
, 𝑎12 =

1

𝐶12
, 𝑎21 =

1

𝐶21
, 𝑎22 =

1

𝐶22
, 𝑏0 =

𝑅𝐿
𝐿𝐿
, 𝑏1 =

1

𝐿𝐿
  

 

Consequently, the feedback control law is formulated as: 

 

𝛼(𝑋)

= (
𝑏0𝑋13 + 𝑏1𝐸2

𝑏1𝐸1

𝑏0𝑋13 + 𝑏1𝐸2
𝑏1𝐸1

𝑏0𝑋13 + 𝑏1𝐸2
𝑏1𝐸1

𝑏0𝑋13 + 𝑏1𝐸2
𝑏1𝐸1

𝑏0𝑋13 + 𝑏1𝐸2
𝑏1𝐸1

𝑏0𝑋13 + 𝑏1𝐸2
𝑏1𝐸1

)
𝑇

 
(9) 

 

Once the state feedback is implemented, the resulting input variables are represented by the vector 

𝑉 = (𝜈11 𝜈12 𝜈13 𝜈21 𝜈22 𝜈23)𝑇  (Figure 2). 

 

For a stacked multicellular converter, the application of nonlinear feedback makes it possible to derive 𝑃 × 2 

linear relations, ensuring complete decoupling between the new input variables and the 𝑃 × 2 state system 

variables. 

 

 
Figure 2. Decoupling with nonlinear feedback: functional representation.  

 

A singularity arises in the vicinity where nonlinear decoupling control loses its validity. These singular points 

correspond to the zero crossing of the load current (𝐼𝐿 = 0) and the DC supply voltage (𝐸 = 0). Under such 

conditions, the system becomes uncontrollable (Gateau, 1997; Gateau et al., 1997). In the case of a chopper, these 

singularities have no impact since they fall outside the normal operating range. Conversely, for an SMC inverter, 
the load current reaches zero twice during each fundamental period. Therefore, it is necessary to introduce a 

limitation on the measured current in order to avoid the singular point at (𝐼𝐿 = 0) as illustrated in Figure 3. 

 

After decoupling the different variables, the system is transformed into 𝑃 × 2 linear subsystems, where each 

subsystem links an input variable to a state variable (𝑋̇ = 𝑉). It then becomes necessary to introduce a second 

linear control loop to impose the desired dynamics on each state variable. As illustrated in Figure 3, this requires 

as many feedback loops as there are state variables. 
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Figure 3. Enslavement of the decoupled system to a reference vector Xref. 

 

 

Neural Network Regulators 

 

To overcome the limitations of classical PI regulators in nonlinear decoupling control, this work proposes a hybrid 

approach that integrates a nonlinear feedback decoupling law with neural network (NN)-based regulators (Figure 

4). The nonlinear feedback structure ensures the separation of the control dynamics between load current and 
floating capacitor voltages, thereby reducing cross-coupling effects and enhancing stability. However, the 

performance of the conventional PI regulators, when embedded in this framework, is often limited under varying 

operating conditions due to their inability to adapt online. 

 

 
Figure 4. Block diagram of the designed hybrid nonlinear feedback decoupling control with neural network 

regulators. 

 

In the proposed hybrid strategy, Proportional–Integral regulators are replaced with feed-forward multilayer 

perceptron (MLP) neural networks. Each NN is trained offline using data generated from the nominal PI 

controllers and then fine-tuned online to account for parametric variations and external disturbances. The general 

mathematical structure of the NN regulator can be expressed as: 

 

𝑌𝑗
𝑙 = 𝑓(∑𝑊𝑗𝑖

𝑙

𝑛𝑙

𝑡

𝑋𝑖 + 𝑏𝑗
𝑙) (10) 

 

where, 
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𝑋𝑖: inputs vector, 

𝑊𝑗𝑖
𝑙 : synaptic weights of neuron 𝑗 in layer 𝑙, 

𝑏𝑗
𝑙: bias input, 

𝑓: activation function (sigmoidal transfer function). 

 

The architecture adopted in this work consists of a static feed-forward MLP with an input layer representing the 

error signals, one hidden layer with ten neurons using a sigmoid activation function, and one output neuron 

providing the reference control voltage. The training parameters include a learning rate of 1×106, momentum 

coefficient of 4.49×103, and a maximum of 1000 epochs. The network was validated using mean squared error 

(MSE) criteria, ensuring convergence without overfitting. 

 
By embedding the neural network regulators inside the nonlinear feedback decoupling scheme, the system benefits 

from both the structural robustness of decoupling control and the adaptive learning capability of neural networks. 

Simulation results demonstrate that this hybrid strategy achieves improved current tracking, reduced harmonic 

distortion (THD), and better stabilization of floating capacitor voltages compared to the conventional PI-based 

decoupling approach. 

 

 

Results and Discussions 
 

This section presents the simulation results and discussion for a 3×2 stacked multicellular DC/AC converter 

controlled by the nonlinear feedback decoupling strategy. The performance of the proposed hybrid scheme, which 

integrates neural network (NN)-based regulators into the nonlinear decoupling law, is compared against the 

classical PI-based approach to evaluate accuracy, robustness, and adaptability. Simulations were performed in 

MATLAB/Simulink using the following parameters (Table 1): 

 

Table 1. Parameters used in simulations 

Parameters Numerical values 

𝑃 (Cells number) 3 

𝑛 (Stack number) 2 

𝐸 (DC voltage) 1500 V 

𝐶 (Floating capacitor) 400 μF 

𝐿𝐿 (Load inductance) 0.1 mH 

𝑅𝐿  (Load resistance) 10 Ω 

𝑓𝑐 (Cutting frequency) 28 KHz 

𝐾𝑝𝑉𝑐  30000 

𝐾𝑖𝑉𝑐  10 

𝐾𝑝𝐼𝐿  2000000 

𝐾𝑖𝐼𝐿 10 

 

These values provide a realistic operating framework and enable the assessment of system behavior under 

different disturbances and operating conditions. To comprehensively evaluate the controllers, three scenarios were 

considered: 

 

1. Reference load current regulation: This scenario tests the ability of the controllers to accurately track step 

variations in the reference load current. The objective is twofold: to verify the current regulation 

capability of the system, and to analyze whether current variations remain decoupled from the capacitor 

voltages. 

2. Variation of DC input voltage: In this scenario, the input DC source is perturbed to examine the stability 

and dynamic response of the system. Again, the goal is twofold: to ensure that the floating capacitor 
voltages are well regulated despite input voltage fluctuations, and to highlight the decoupling between 

input voltage dynamics and load current regulation. 

3. Load parameter variations: The third scenario evaluates the robustness of the controllers under changes 

in load resistance and inductance. This test assesses the adaptability of both PI- and NN-based regulators 

when subjected to parametric uncertainties, ensuring reliable operation under realistic load disturbances. 

 

The comparative results under these three conditions demonstrate that both control schemes achieve satisfactory 

performance; However, the NN-based regulators offer noticeable advantages in terms of faster transient response, 

improved decoupling behavior, and enhanced robustness to load variations. 
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Floating Capacitor Voltage Regulation 

 

 
Figure 5. Evolution of DC input voltage and floating voltages (a: PI regulator, b: NN regulator) 

 

 
Figure 6. Evolution of output voltage (a: PI regulator, b: NN regulator) 

 

The comparative study shows that both PI (Figure 5-a) and neural network (NN)-based regulators (Figure 5-b) 

achieve similar response times during startup. However, after disturbances at 0.35 s (300 V drop in input DC 

voltage, reducing Edc from 1500 V to 1200 V), the nonlinear feedback decoupling strategy combined with NNs 

provides a much faster rebalancing of the floating capacitor voltages. For instance, the settling time of VC11 (stack 

1) is reduced from 9.7 ms with PI to only 0.81 ms with the NN controller, representing a reduction of about 92%. 

Similar improvements are observed for the other capacitor voltages, with average reductions of nearly 79%. This 

faster stabilization ensures better voltage balancing, which directly translates into more symmetrical waveforms 
and enhanced output quality (Figure 6). This variation has no effect on the load current. 
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Load Current Regulation 

 
Figure 7. Evolution of load current (a: PI regulator, b: NN regulator) 

 

When a variation in the load current is applied at 0.15 s (Figure 7) where we decrease the value of the reference 

load current from 120 A to 80 A, a reduction of 40 A, both PI and NN based regulators show similar overall 
performance, with only slight differences in dynamic response. The PI controller achieves satisfactory tracking 

with small overshoot and acceptable convergence time, while the NN-based regulator shows marginally faster 

stabilization and slightly reduced transient deviations. Thanks to the nonlinear feedback decoupling, capacitors 

voltages stability is maintained in both cases, although the NN regulator provides a minor improvement by further 

reducing the coupling effects between current dynamics and capacitor voltages. These results indicate that the two 

approaches perform comparably, with the NN-based method offering only incremental benefits. 

 

 

Voltage-Current Decoupling 

 

A key advantage of the nonlinear feedback decoupling framework is its ability to isolate voltage dynamics from 

current dynamics which is visible in figures 5, 6 and 7. In the PI-controlled inverter, a change in load current 
significantly perturbs the floating capacitor voltages, increasing rebalancing time and degrading output quality. 

In contrast, the NN-based controller preserves effective decoupling, allowing capacitor voltages to recover more 

quickly (57–92% faster depending on the cell), while maintaining stable and well-regulated current. This validates 

the capability of the proposed control to reduce cross-interactions between voltage and current, ensuring more 

predictable and stable performance. 

 

 

Harmonic Distortion (THD) 

 

 
Figure 8. Output voltage with THD (a: PI regulator, b: NN regulator) 
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Figure 9. Load current with THD (a: PI regulator, b: NN regulator) 

 
The NN-based approach provides a notable improvement in output waveform quality. The total harmonic 

distortion (THD) in the output voltage (figure 8) decreases from 18.41% with PI regulation to 16.91% with the 

NN controller, representing an 8.1% relative reduction. The current THD (figure 9) also decreases slightly, from 

0.19% to 0.18%. Although the improvement in current quality is modest, the reduction in voltage THD is 

significant, as it reflects the improved voltage balancing achieved through faster capacitor regulation. 

 

 

Overall Robustness 

 

 
Figure 10. Evolution of DC input voltage and floating voltages _ robustness test (a: PI regulator, b: NN 

regulator) 
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Figure 11. Output voltage _ robustness test (a: PI regulator, b: NN regulator) 

 

 
Figure 12. Load current _ robustness test (a: PI regulator, b: NN regulator) 

 

Under different operating scenarios (figures 10, 11 and 12) -including, current steps (reduction of 40 A) at 0.15 s, 
load variations (50% increase in RL load) at 0.25 s and input DC voltage drops (drop in input DC voltage, reducing 

Edc from 1500 V to 1200 V) at 0.35 s —the NN-based controller consistently maintains system stability, capacitor 

voltage balancing, and current regulation. In contrast, the PI-controlled system shows a lack of robustness, with 

degraded performance under the same disturbances. This superior robustness of the NN-based decoupling strategy 

can be attributed to the adaptive learning capability of neural networks, which enables real-time compensation of 

parameter uncertainties and external perturbations, while maintaining effective decoupling. 

 

 

Summary 
 

In summary, at equal system architecture and control objectives, the nonlinear feedback decoupling approach with 

NN-based regulators clearly outperforms the PI-controlled version. It ensures significantly faster capacitor voltage 

regulation (on average 79% faster after disturbances), more accurate load current tracking, reduced coupling 

between voltage and current dynamics, lower voltage THD, and superior robustness under parameter variations 
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and disturbances. These results confirm the effectiveness of the proposed method for achieving high-performance 

operation in stacked multicellular inverters. 

 

 

Conclusion 

 
This paper has introduced a novel control strategy for a 3×2 stacked multicellular inverter, combining nonlinear 
feedback decoupling with neural network-based regulation. Unlike conventional PI controllers, which are 

sensitive to parameter variations and load disturbances, the proposed approach leverages the adaptive capabilities 

of neural networks to approximate the nonlinear control law in real time and compensate for uncertainties. 

Simulation results in MATLAB/Simulink have confirmed that the method provides faster dynamic response, 

improved voltage regulation, and lower total harmonic distortion. These findings demonstrate the effectiveness 

of integrating nonlinear decoupling with intelligent control, establishing a robust and reliable solution for high-

performance power conversion systems. 
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