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Abstract: The global TRIP 800 steel industry is a dynamic and constantly evolving sector, requiring 

innovative technologies and robust materials to meet performance and safety standards. Among the techniques 

used for assembling metallic materials, resistance welding—and more specifically, spot welding is widely 

employed for joining high-quality metal parts. This method enables the creation of sealed and durable joints, 

which are essential for applications in the aerospace, automotive, shipbuilding, and other industrial sectors. The 

variations in temperature and pressure can influence the metallurgical structure of the joint, potentially 

compromising its strength and durability. The objective of our study is to model a shear tensile test to visualize 

the influence of spot welding parameters, such as the spacing between weld points, the dimensions of the weld 

joints, and the effect of TRIP 800 steel plates. This study covers the various welding methods, with a particular 

focus on resistance spot welding. We discuss the welding principle, the different stages of the process, the 

geometry and microstructure of the weld nugget, as well as the heat-affected zone (HAZ) and weldability 

considerations, and we explore the general concepts related to TRIP 800 steel. Secondly we interpret the 

equivalent stress results (VON MISES and MAX PRINCIPAL) and analyze stress histograms representing the 

molten metal and the heat-affected zone across four different geometric models to illustrate the influence of 

weld point spacing, finally, we focused on the behavior of the joint in the event of failure (spot welding), by 

creating a model that includes a crack.This crack occurs in the base metal with identical size, in order to 

parameterize the study and visualize the fracture behavior of the joint while interpreting the J-integral contour.  
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Introduction 

 

The global TRIP 800 steel industry is a dynamic and constantly evolving sector that demands innovative 

technologies and robust materials to meet performance and safety requirements. Among the various techniques 

used for joining metallic materials, resistance welding-and more specifically spot welding-is widely employed 

to assemble high-quality metal components. This method enables the creation of tight and durable joints, which 

are essential for applications in the aerospace, automotive, shipbuilding, and other industrial sectors. 

http://www.isres.org/
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Spot resistance welding is an innovative joining technique, particularly widespread in the automotive industry. It 

does not require any filler material, as the weld nugget is formed by the fusion of the metal itself (Joule effect) 

between the sheets to be joined. Generally, this technique is used to assemble two thin sheets (ranging from 0.1 

to 3 mm) through the formation of a weld nugget. The sheets in contact are subjected to pressure by two 

electrodes and traversed by a high-intensity alternating current at low voltage. 

 

However, spot welding presents several challenges, notably the need for precise control of welding parameters 

to ensure high-quality results. Variations in temperature and pressure can affect the metallographic structure of 

the joint, potentially compromising its strength and durability. The objective of our study is to model the shear-

tensile test in order to visualize the influence of spot welding parameters, such as the spacing between weld 

spots, the dimensions of the weld joints, and the effect of TRIP 800 steel plates. 

 

 

Method and Analysis  
 

Mechanical Properties and Model  

 

In this study, we will create a numerical model of two spot-welded plates using physical, mechanical, or thermal 

data obtained from previous studies in the field in which we aim to develop this model. Many books focus on 

this area, such as those by Sylvain DANCETTE and Habib LEBBAL, who use different types of stainless steel 

to represent the behavior of welded plates. We conducted a comparison between two spot-welded plates in this 

study. These two plates have the same dimensions, as shown in Figure 1. 

     

 
Figure 1. Spot welding model and tensile behavior law as a function of the thermal cycle for TRIP 800 

 

 

Boundary Conditions and Mesh Model  

 

The boundary conditions include all the forces or constraints that affect the mechanical behavior of the plate 

during the tensile test. The boundary conditions may include stress, concentric force, displacement, strain, and 

so on. During a tensile test, the boundary conditions are generally defined as two tensile forces applied on both 

sides of the sheets, one being equal and opposite to the other, or as a simplified case with one side fixed and a 

load applied on the other. 

 

The Figure 2 shows the boundary conditions used in this simulation: 

 

• An applied load in MPa. 

• A fixed (encastrement) constraint. 

• Zero displacement along the Y and Z axes. 

• Allowed displacement along the X axis. 

 

Obtaining reliable results requires an extremely sophisticated mesh. Indeed, it is essential to refine the mesh by 

studying the interaction between the base metal, the heat-affected zone (HAZ), and the molten metal in order to 

analyze the overall structure. The graphical representation illustrates the structure of the different parts of the 

welded plate. By applying the concept of convergence and accuracy of the results in this study, we improved the 

mesh in the various regions of the plate. The ABAQUS computational code allows us to perform this refinement 

in all zones and directions. In this study, we created a linear quadratic element, and the global model generated 

23,082 elements of type C3D8R. 
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Figure 2. Boundary conditions and mesh model 

 

 

Results and Discussion 

 
The Graphs below illustrate the variation of the equivalent stress for the TRIP 800 material as a function of the 

overlap (38 mm) for six loading modes, ranging from 20 MPa to 200 MPa, for X1, X2, X3, and X4 in the 

longitudinal direction. The analysis of these four graphs shows that the effect of the applied load on the stress 

intensity is significant, far exceeding the stresses recorded in the transverse direction. Each point corresponding 

to X1, X2, X3, and X4 is highly stressed and exhibits a peak in the maximum principal stress. This peak value is 

similar for the first three positions (X1, X2, and X3), which show the same behavior, whereas X4 presents a 

different pattern. It is also observed that the graphs display a non-symmetrical and stochastic profile that 

increases in the loading direction, with stress peaks along the overlap. This behavior is due to the transition from 

one zone to another (variable stiffness). The highest stress values are recorded for X1, X2, and X3, reaching 

levels around 1000 MPa-close to the yield strength of the molten metal. In contrast, X4 shows a stress value 

around 600 MPa, which largely exceeds the yield strength of the base metal and the heat-affected zone, yet 

remains below that of the molten metal. 

 

  
 

   
Figure 3. Evolution of the maximum principal stress as a function of the longitudinal overlap nodes for TRIP 

800: (a) (x = 120), (b) (x = 155), (c) (x = 195), (d) (x = 275). 
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To clearly understand the effect of the applied load and study its influence on the behavior of the TRIP 800 

welded plate, we conducted an analysis of the variation of the equivalent stress (maximum principal stress) in 

the direction perpendicular to the loading (transverse direction) for different load amplitudes: 20, 60, 100, 120, 

160, and 200 MPa. The figure illustrates the schematic representation of the transverse direction considered in 

our study. This axis passes through the midline between the two sheets at the overlap region and crosses both 

the heat-affected zone and the weld nugget (molten metal). The purpose of creating this axis was to visualize the 

evolution of the equivalent stress at the contact points between the two plates. 

 

 
Figure 4. Schematic representation of the transverse direction 

 

  

  
Figure 5. Evolution of the maximum principal stress as a function of the transverse overlap nodes for TRIP 800: 

(a) (x = 120), (b) (x = 155), (c) (x = 195), (d) (x = 275). 

 

 

Conclusion  
 

To evaluate the mechanical strength of spot welds in steels used in the automotive industry, we conducted one 

of the most thorough tests - the shear-tensile test - in order to observe how resistance spot-welded sheets behave 

as they approach the point of failure. Accordingly, a detailed numerical model was developed using the 

ABAQUS software, which accurately reproduces the geometric model used in the tensile test. It should be noted 

that this research focused on studying the behavior of DP450 and DP980 steels in the elastoplastic domain, 

providing valuable data on their strength and performance when subjected to mechanical stresses. The 

combination of experimental testing and numerical modeling allows for a more precise estimation of the 

strength of steel spot welds, contributing to the continuous improvement of vehicle safety and durability. The 

results obtained allow us to conclude that: 

 

• The stresses increase with the applied load. 
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• The maximum principal stress and S11 show similar variations. 

• As the pitch (spacing) increases, the stress intensity decreases. 

• In the case of a longitudinal distribution, the stress increases significantly in the direction of the applied 

load. 

• The contact zones between the base metal, the heat-affected zone (HAZ), and the molten metal always 

show a noticeable effect on the stress variation, with a peak occurring when passing from one zone to 

another. 

• The histogram results indicate that the heat-affected zone represents the weakest link in the MB–HAZ–

WM chain, as it is the first area affected during loading. 

• The numerical simulation shows that damage in the base metal starts at around 160 MPa, whereas the 

heat-affected zone begins to fail at around 100 MPa. Meanwhile, the weld nugget shows no sign of 

damage for the four models with different spacings (X1, X2, X3, X4). 

• The weld metal (WM) exhibits no sign of damage in any of the four welding models. 

• The HAZ shows signs of damage starting from 100 MPa, which is due to the low stiffness of this 

region. 

• The weakest area in resistance spot welding remains the heat-affected zone, regardless of the influence 

of the weld pitch. 
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