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Abstract: In this paper, we propose a novel method for constructing low-density parity-check (LDPC) codes 

that relies on circulant permutation matrices as the main principal elements. A key feature of this construction is 

the intentional avoidance of short cycles, particularly those of length four, which are known to degrade decoding 

performance. By eliminating these cycles, the approach contributes to lowering both encoding and decoding 

complexity, making the codes more efficient to implement. To assess their effectiveness, the proposed LDPC 

codes are evaluated and compared with uncoded binary phase shift keying (BPSK) transmission over an additive 

white Gaussian noise (AWGN) channel. The simulation outcomes demonstrate that the structured codes deliver 

competitive results, achieving error-rate performance similar to, and in some instances exceeding, well-known 

designs such as progressive edge growth (PEG) and quasi-cyclic (QC) codes. 
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Introduction 
 

Low-Density Parity-Check (LDPC) codes, originally introduced by Gallager (1962), have attracted significant 

attention owing to their strong error-correcting capability and their potential to operate close to the Shannon 

capacity limit (Chung et al., 2001). As a subclass of linear block codes (Lin & Costello, 2004), they are defined 

through a sparse parity-check matrix H, of dimensions M×N, which contains only a small proportion of ones 

relative to zeros, hence the designation "low-density." Depending on the uniformity of the number of ones 

across rows and columns, LDPC codes are categorized as regular or irregular. The design of such codes requires 

careful consideration of parameters such as row and column weights, the girth of the associated Tanner graph, 

and the overall code length. Two principal design strategies exist: random (unstructured) (MacKay, 1999) and 

deterministic (structured) constructions (Shin et al., 2014; Moura et al., 2004; Tehami & Djebbari, 2018, 2019). 

While random approaches are straightforward and often yield strong performance, they typically demand 

substantial memory resources for encoding and decoding, particularly at large block lengths, which can result in 

high computational cost ‘sometimes a more critical limitation than the error rate itself’ (Tehami & Djebbari, 

2018). 

 

To overcome the limitations of random constructions, several structured design approaches have been 

introduced (Gallager, 1963; Richardson & Urbanke, 2008). By enforcing regular patterns in the parity-check 

matrix H, these methods facilitate more efficient hardware implementations for both encoding and decoding 

http://www.isres.org/
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(MacKay, 1999). In such constructions, the connections between rows and columns follow predefined rules, 

which contribute to reducing overall system complexity (Fossorier, 2004; Kou et al., 2001; Lin & Costello, 

2004; Zhong & Zhang, 2005; Zhang et al., 2008). Structured LDPC codes are particularly advantageous for 

short block lengths, where they often outperform their random counterparts (MacKay, 1999; Richardson & 

Urbanke, 2008). Nevertheless, they also exhibit inherent constraints, especially with respect to achievable code 

rates, block lengths, and girth, and their performance tends to deteriorate as the block length increases (Gallager, 

1963; Kou et al., 2001). 

 

The Tanner graph offers a useful graphical representation of the LDPC decoding process (Tanner, 1981). It is a 

bipartite graph composed of two types of nodes: variable nodes, corresponding to the columns of H, and check 

nodes, corresponding to the rows. The edges connecting these nodes define the overall structure of the code. 

Within this framework, a cycle refers to a closed path formed by a sequence of edges, and the girth of the graph 

denotes the length of its shortest cycle. Short cycles, particularly those of length four, are especially detrimental 

because they reduce the independence of the messages exchanged during iterative decoding, which in turn 

degrades the overall performance (Zhang et al., 2008). Although quasi-cyclic LDPC (QC-LDPC) codes provide 

several advantages, their encoding process continues to pose significant challenges. This issue has been 

addressed in multiple studies. A class of globally coupled (GC) LDPC codes was proposed by Zhu & Yang 

(2022), combining local LDPC structures with an overarching global parity constraint. This design achieves 

strong performance while maintaining relatively low complexity, yet the encoding process remains difficult to 

implement efficiently. Likewise, Mo et al. (2020) introduced in a new family of LDPC codes that can be 

encoded through approximate lower triangulation (ALT) (Richardson & Urbanke, 2001), which relies on row 

and column permutations of the parity-check matrix. Nevertheless, despite these efforts, decoding complexity 

remains substantial. 

 

In this work, we present a novel category of LDPC codes that are explicitly constructed to eliminate length-4 

cycles, thereby reducing both encoding and decoding complexity while delivering excellent bit error rate 

performance in the waterfall region. The remainder of the correspondence is organized as follows: Section 2 

details the methodology for constructing the parity-check matrix H, emphasizing strategies for avoiding 4-cycles 

and discussing the impact of girth on LDPC performance. Section 3 analyzes encoding complexity, with 

particular attention to the role of column weights in determining the minimum distance and the trade-off 

between performance and implementation cost. Section 4 examines decoding complexity, showing its 

dependence on the number of branches in the Tanner graph and discussing the role of the belief propagation 

algorithm. Comparisons are also made with the codes of Gallager and MacKay in terms of branch density. 

Section 5 reports simulation results obtained via Monte Carlo experiments over an AWGN channel. Finally, 

Section 6 summarizes the key findings and concludes the paper.  

 

 

Method  
 

The girth, defined as the length of the shortest cycle within the Tanner graph of an LDPC code, is a critical 

parameter that strongly influences code performance. Some studies (Fossorier, 2004; Tanner, 1981; Hu et al., 

2001, 2005; Richardson, 2003) have reported that increasing the girth can result in a higher error floor, whereas 

simulation-based investigations (MacKay & Postol, 2003) suggest that a larger girth typically improves bit-

error-rate (BER) performance, which is generally adequate for practical use. For this reason, the development of 

LDPC codes with girth values greater than four has become a topic of considerable interest for real-world 

applications (Kou et al., 2001). The method proposed in this work focuses on constructing LDPC codes that 

completely eliminate 4-cycles. To achieve this, the parity-check matrix H, of size M×N (where M denotes the 

number of rows and N the number of columns), is generated through a two-step design procedure. 

 

 

Step 1 

 

The procedure starts with the construction of an identity matrix I of dimension m×m, where m is assumed to be 

an even integer. A new matrix C is then generated by reflecting I vertically while keeping the columns 

unchanged. More precisely, each element Ci,j is defined as the entry of I located at row m+1−i and column j. 

This operation can be expressed as: 

 

Ci,j=Im+1-i,j                                                                                                                                                               (1) 

 

For i,j= 1,2,… ,m. 
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Step 2 

 

To obtain the matrix Ck, a circular shift of k columns is applied to the identity matrix I, which has size m×m. 

This shift moves each column to the right by k positions. 

This transformation can be defined using matrix multiplication: 

 

Ck=I.Pk                                                                                                                                                                                                                                                           (2) 

 

Where  

I is the m×m identity matrix. 

P is a circular permutation matrix that performs a one-position leftward shift of the columns. 

Pk indicates the matrix P raised to the kth power, effectively rotating the columns by k steps. 

The full matrix H, having size m2×m2, is built through the systematic placement of the identity matrix and its 

shifted submatrices Ck, according to the following structure:  

 

         C    C    C    …    C 

H=    C    C1   C2    …   Cn                                                                                                                                         (3) 

Here, n denotes the number of shifted submatrices, is given by: 

n=m-1                                                                                                                                                                    (4) 

 

Example 

 

First, consider the 4×4 identity matrix  

 

 

 

            1   0   0   0 

            0   1   0   0  

 I=       0   0   1   0 

            0   0   0   1 

 

 

 

Next, C1 is obtained by applying a left circular shift of one position to I. This operation can be expressed as: 

 

                   

                  0   1   0   0 

                  0   0   1   0  

 C1=I.P1=   0   0   0   1 

                  1   0   0   0 

 

 

 

where P1 is the permutation matrix that performs a one-step right circular shift of the columns.  Following the 

same procedure, the matrices C2=I.P2 and C3=I.P3 are generated by applying two-step and three-step right 

circular shifts, respectively: 

                  

 

                  0   0   1   0 

                  0   0   0   1  

 C2=I.P2=   1   0   0   0 

                  0   1   0   0 

                 0   0   0   1 

                 1   0   0   0  

 C3=I.P3=  0   1   0   0 

                 0   0   1   0 
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By following the structure in (3), the resulting 8 × 16 parity-check matrix is obtained as: 

 

          0    0    0    1    0    0    0    1    0    0    0    1    0    0    0    1 

          0    0    1    0    0    0    1    0    0    0    1    0    0    0    1    0 

          0    1    0    0    0    1    0    0    0    1    0    0    0    1    0    0 

          1    0    0    0    1    0    0    0    1    0    0    0    1    0    0    0 

H=     0    0    0    1    1    0    0    0    0    1    0    0    0    0    1    0 

          0    0    1    0    0    0    0    1    1    0    0    0    0    1    0    0 

          0    1    0    0    0    0    1    0    0    0    0    1    1    0    0    0 

          1    0    0    0    0    1    0    0    0    0    1    0    0    0    0    1 

 

  

 

Encoding Complexity 

 

Gallager (1963) demonstrated that the minimum distance of LDPC codes grows only logarithmically with code 

length when the column weight equals 2. In contrast, when the column weight is at least 3, the minimum 

distance increases linearly with code length (Gallager, 1962). Such codes have shown effectiveness in several 

applications, including partial-response channels (Song et al., 2002; Song et al., 2004). Their relatively low 

computational demand stems from the reduced column weight. Despite these advantages, practical hardware 

implementation remains challenging (Malema & Liebelt, 2007) due to the random distribution of row–column 

connections and the typically large size of LDPC codes. Structured codes were later introduced to alleviate this 

complexity, providing more regular interconnections while maintaining good performance (Malema & Liebelt, 

2007). Furthermore, constraining the row–column connections has been used to control the girth, i.e., the length 

of the shortest cycle in the Tanner graph (Fossorier, 2004). 

 

Increasing the girth generally leads to improved decoding performance, as larger cycles reduce the likelihood of 

short, error-prone loops (O’Sullivan, 2006; Mao & Banihashemi, 2001). In summary, both structured design and 

girth optimization contribute significantly to enhancing the efficiency of LDPC codes. The structure of the 

parity-check matrix has a decisive impact on the efficiency of LDPC encoding (Tehami & Djebbari, 2019; 

Richardson & Urbanke, 2001). The proposed method, based on a sparse design of the submatrices Ck, offers 

several advantages: 

 

• A sparse parity-check matrix H significantly reduces the memory required to store parity information 

(MacKay, 1999; Tehami & Djebbari, 2018). 

• The use of permutation matrices contributes to an efficient and well-organized structure (Fossorier, 

2004). 

• Thanks to its sparsity, H enables low encoding complexity, making it highly suitable for practical 

implementations (Song et al., 2004). 

 

 

Decoding Complexity 

 
The decoding complexity of LDPC codes is primarily determined by the number of branches Br  in the Tanner 

graph, or equivalently, by the number of nonzero entries (‘1’s) in the parity-check matrix (Berrou, 2010). The 

iterative decoding process, based on the belief propagation algorithm, involves multiple stages. At each 

iteration, both the extrinsic and total information associated with each node must be computed (Divsalar et al., 

2009). For a regular code (N, WC, WR), where WC and WR denote the column and row weights respectively. The 

number of branches can be expressed as: 

Br=WC*N=WR*M                                                                                                                                                 (5)                              

 

Table 1. Comparison of proposed LDPC codes with Gallager codes and Mackay codes. 

Block length Proposed codes Gallager codes Mackay codes 

N=500 and M=250 Br=1500 Br=1500 Br=1500 

N=1000 and M=500 Br=2000 Br=3000 Br=3000 

 

As shown in Table 1, the proposed LDPC codes require fewer branches compared to Gallager and Mackay 

codes. This reduction implies that the corresponding parity-check matrices H are sparser (containing fewer ones 

relative to zeros), which directly contributes to lowering the decoding complexity. 
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Results and Discussion 
 

Monte Carlo simulations were performed to investigate the bit error rate (BER) performance of the proposed 

LDPC codes (MacKay, 1999). The iterative belief propagation (BP) algorithm was adopted as the decoding 

method (Gallager, 1963), and transmission was assumed over an additive white Gaussian noise (AWGN) 

channel. For simulation purposes, a code rate of R= 1/2  and a block length of N=4368 were selected. Each 

simulation involved at least 103 transmitted codewords, with the maximum number of decoding iterations 

capped at 80. The obtained results are presented in comparison with conventional LDPC codes to highlight the 

relative performance of the proposed design. The signal-to-noise ratio (SNR) definitions for both coded and 

uncoded binary phase-shift keying (BPSK) follow O’Sullivan (2004). Specifically: 

 

SNRcoded=10 log10 (Eb/2σ2R)                                                                                                                                  (6) 

SNRuncoded=10 log10 (Eb/2σ2)                                                                                                                           (7) 

 

Where Eb and σ2 represent energy per bit and noise variance, respectively.  

 

Figure 1 illustrates the BER performance of the proposed LDPC codes in comparison witn uncoded BPSK 

transmission. The parameters considered are: N=4368, WC =2 and a code rate R=1/2. For reference, in BPSK-

modulated system operating over a Gaussian channel, the BER is given by 

 

BER=Q(SNR)1/2                                                                                                                                                     (8) 

 

where the function Q represents the tail function of the normal distribution. 

 

 
Figure 1. BER performance for the proposed LDPC codes for N=4368 and WC= 2. 

 
Figure 2. Comparison of BER performance between the proposed LDPC codes, PEG-LDPC codes and 

QCLDPC codes in the waterfall region. 
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As shown in Figure 1, the proposed LDPC code clearly outperforms uncoded BPSK. At a BER of 10-2, a 

performance gain of approximately 1.95 dB is observed. This improvement can be attributed to the efficiency of 

LDPC codes with column weight WC=2, which provide a significant advantage over uncoded transmission in 

terms of error-rate reduction. Figure 2 shows the BER performance of the proposed LDPC codes with N=4368 

over the AWGN channel in the waterfall region. At a BER of 10-2, the proposed codes achieve a gain of 

approximately 0.4 dB compared with both PEG LDPC and QC LDPC codes. Furthermore, at a BER of 10-3, 

they outperform PEG-LDPC codes by about 0.05 dB. This performance improvement is mainly attributed to the 

simplified encoding process and the elimination of girth-4 cycles. 

 

 
Figure 3. Comparison of BER performance between the proposed LDPC codes, PEG-LDPC codes and 

QCLDPC codes in the low error-floor region. 

 

Figure 3 shows the BER performance of the proposed LDPC codes over the AWGN channel in the low error-

floor region. At a BER of 10−4, the proposed codes achieve a performance gain of about 0.5 dB compared to 

QC-LDPC codes. At a BER of 10−5, they still provide a slight improvement over PEG-LDPC codes. These 

results indicate that the proposed design is able to approach the error-floor region even for large block lengths. 

 

 

Conclusion  

 
To address both implementation constraints and reception quality, LDPC codes must achieve a low error floor 

while maintaining reduced encoding and decoding complexity. In this work, we introduced a construction 

method for parity-check matrices that eliminates short cycles across different code rates. Additionally, the 

adoption of quasi-cyclic structures significantly lowers memory requirements. Simulation results confirm that 

the proposed LDPC codes exhibit strong performance over the AWGN channel, demonstrating their efficiency 

and practical applicability. 
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