The Eurasia Proceedings of Science, Technology,
Engineering & Mathematics (EPSTEM)

Publishing ISSN: 2602-3199

The Eurasia Proceedings of Science, Technology, Engineering and Mathematics (EPSTEM), 2025
Volume 38, Pages 226-243

IConTES 2025: International Conference on Technology, Engineering and Science

Computational Materials Design: Tuning Optoelectronic Response in
GaxInl-xBiyP1-y Alloys via Structural Matching to InP

Malika Tehami
Djillali Liabes University of Sidi Bel Abbes

Miloud Benchehima
University of Sciences and Technology

Hamza Abid
Djillali Liabes University of Sidi Bel Abbes

Abstract: This theoretical study presents a computational investigation into the structural, electronic, and
optical properties of GaxInl-xBiyPl-y quaternary alloys specifically lattice-matched to an InP substrate,
utilizing density functional theory (DFT). The calculations were performed using the full-potential linearized
augmented plane wave (FP-LAPW) method. Structural properties were assessed using the local density
approximation (LDA) and the Wu-Cohen generalized gradient approximation (WC-GGA), with WC-GGA used
to define the lattice-matching target based on the calculated InP lattice constant. Electronic properties were
determined using the Engel-Vosko GGA (EV-GGA) and Tran-Blaha modified Becke-Johnson (TB-mBJ)
functionals. Optical properties were analyzed in detail, with optical band gaps derived using Tauc's method.
Lattice-matching conditions to InP were established, yielding calculated lattice constants around 5.9 A for
matched compositions (x, y), in excellent agreement with the experimental InP value (5.869 A). Band structure
analysis confirms these alloys are direct band gap semiconductors at the I" point for all studied lattice-matched
compositions. The investigation of optical properties reveals that the electronic band gaps (via TB-mBJ)
correspond to wavelengths spanning approximately 0.91 um to 2.46 um, while Tauc analysis yields optical band
gaps corresponding to ~0.9 pm to ~1.56 um, all while maintaining lattice matching. These findings highlight
GaxInl-xBiyP1-y/InP alloys as promising materials for optoelectronic devices, particularly for
telecommunication applications operating at 1.3 pm and 1.55 pm, due to their tunable optoelectronic
characteristics and structural compatibility with InP.

Keywords: GalnBiP quaternary alloys, Density functional theory, Lattice matching, Optoelectronic properties,
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Introduction

In recent years, great efforts have been made in the research of semiconductor alloys and nanostructures
containing bismuth (Bi). These new Bi-containing alloys and nanostructures possess interesting physical
properties and reveal promising device applications (Zhang et al., 2019), (Wang et al., 2019), (Paulauskas et al.,
2020), (Usman et al., 2019), (Donmez et al., 2021), (Jain et al., 2022). The incorporation of Bi into traditional
IITI-V compounds leads to substantial modifications in electronic band structure, most notably a strong reduction
in the band gap energy and an increase in spin-orbit splitting (Paulauskas et al., 2020). The GaxInl-xBiyP1-y
quaternary alloy system, composed of Indium (In), Gallium (Ga), Phosphorus (P), and Bismuth (Bi) in varying
concentrations, represents a particularly promising class of these materials.
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One of the key advantages of quaternary alloys like GaxInl-xBiyP1-y is their high degree of tunability. By
carefully adjusting the molar fractions 'x' (for Ga) and 'y' (for Bi), it is possible to engineer fundamental material
properties such as the band gap energy (Adachi., 2009). This compositional tuning can be performed while
simultaneously satisfying the lattice-matching condition to readily available binary substrates, such as Indium
Phosphide (InP). Lattice matching is vital for the epitaxial growth of high-quality, low-defect heterostructures,
which form the basis of many advanced semiconductor devices (Adachi., 2009). InP is a standard substrate for
devices operating in the near-infrared, particularly for telecommunications applications (Zhang et al.,
2019),(Wyckoff, 1986), (Meiners, 1986).

The GaxInl-xBiyP1-y system can be conceptualized as deriving from the binary endpoints GaP, InP, GaBi, and
InBi (Adachi, 2009). These binaries exhibit a wide range of lattice constants (from 5.451 A for GaP (Jain et al.,
2022) to 6.628 A for InBi (Gandouzi et al., 2018) and band gap energies (from 0.00 eV for InBi and GaBi
(Wang & Ye, 2002) to 2.35 eV for GaP (Madelung, 2004), with InP at 1.424 eV (Vurgaftman et al., 2001). This
wide parameter space theoretically allows GaxInl-xBiyP1-yalloys to cover a broad spectral range, from the
visible to the infrared (0.57-1.72 pm (Paulauskas et al., 2020)), making them attractive candidates for
applications including multi-junction solar cells (Adachi., 2009), photodiodes (Jain et al., 2022), infrared lasers
(Usman et al., 2019), (Donmez et al., 2021), and heat detectors (Zhang et al., 2019), (Wang et al., 2019),
(Paulauskas et al., 2020).

While related ternary alloys like GalnP, GaBiP, InBiP, and InPBi have been subjects of investigation (Kumar et
al., 2009) , (Yang et al., 2015), (Samajdar et al., 2016), (Usman et al., 2011), (Wu et al., 2016), (Gelczuk et al.,
2016) , (Nattermann et al., 2017) , and successful growth of InPBi has been reported (Wang et al., 2014),
theoretical understanding of the quaternary GaxInl-xBiyP1-y especially under lattice-matched conditions to
InP, is essential for realizing its technological potential. (Berding et al., 1988) investigated InPBi theoretically,
and GalnP as a basic material for red laser diodes (Meiners, 1986).

This work focuses on a first-principles theoretical investigation of the fundamental structural, electronic, and
optical properties of GaxInl-xBiyPl-y alloys designed to be lattice-matched to an InP substrate, aiming to
provide insights for future materials design and device fabrication.

Method

The theoretical investigation was conducted using density functional theory (DFT) (Kohnet al., 1965), (Ceperley
et al., 1980), employing the full-potential linearized augmented plane wave (FP-LAPW) method as implemented
in the Wien2k computational package (Blaha et al., 2019). This method is known for its high accuracy in
calculating the electronic structure and related properties of solids.

Figure 1. Crystal structure of the 32-atom SQS supercell for Ga o375 In 0.625 Bi 0.1875 Po.g125 (Q3), representing a
lattice-matched GaxIni«Bi,P.y alloy.
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To model the GaxInl-xBiyP1-y quaternary alloys with varying compositions (x, y), we utilized the special
quasi-random structure (SQS) approach developed by Zunger (Zunger et al., 1990). This method allows for the
modeling of random alloys using relatively small, ordered supercells that mimic the essential correlation
functions of the truly random alloy. A 32-atom simple cubic (2x2x2) supercell was constructed for this purpose.
An example structure forGa0.375 In 0.625 Bi 0.1875 P0.8125 (Q3) is shown in (Figure 1).

Different exchange-correlation functionals were employed depending on the property being calculated. For
structural optimization (determining equilibrium lattice constants and bulk moduli), the local density
approximation (LDA) (Kohn et al., 1965), (Ceperley et al., 1980) and the Wu-Cohen generalized gradient
approximation (WC-GGA) (Wu et al., 2006)] were used. For electronic and optical properties, the Engel-Vosko
GGA (EV-GGA) (Engel et al., 1993) and the Tran-Blaha modified Becke-Johnson potential (TB-mBJ) (Tran et
al., 2009) were utilized. The TB-mBJ functional is particularly noted for providing improved band gap
predictions compared to standard LDA/GGA functionals. The calculations were performed with the following
parameters:

. Plane wave cut-off: RMT * KMAX = 8, where RMT is the smallest muffin-tin radius.

e  Maximum angular momentum: IMAX = 10 within the muffin-tin spheres.

e  Muffin-tin radii (RMT): Ga=2.0au.,In=2.1 au,, Bi=2.5au., and P=2.0 a.u. (1 a.u. =0.52917 A).

e  Energy convergence criterion: 10~* Ry for self-consistent field (SCF) iterations.

e  Core-valence state separation: -6 Ryd.

e  Brillouin zone integration: A k-point mesh equivalent to 5000 k-points in the full Brillouin zone was used
for structural calculations. For optical property calculations, which require denser sampling, 172 k-points
in the irreducible Brillouin zone were employed using a methodology suitable for optical properties (Abt et
al., 1994) , (Ambrosch-Draxelet al., 2006).

Vegard's law (Adachi., 2009) was used as an initial guide to estimate lattice constants for different compositions
(X, y) and to establish the relationship between x and y required for lattice matching to the InP substrate. The
lattice constant of the quaternary alloys was then fixed to the calculated value for InP using the WC-GGA
functional (5.8908 A) for subsequent electronic and optical property calculations, simulating perfect epitaxial
growth on InP.

Results and Discussion
Structural Properties

First, the structural properties (equilibrium lattice constant 'a' and bulk modulus 'B') of the parent binary
compounds (InP, InBi, GaP, GaBi) were calculated using both LDA and WC-GGA. The results are presented in
(Table 1) and compared with available experimental and theoretical data (Levinshtein et al., 1996), (Janotti et
al., 2002), (Gandouzi et al., 2018), (Wang et al., 2002), (Madelung., 2004), (Vurgaftman et al., 2001), (Liu et
al., 2007) , (Assali et al., 2020), (Celin-Manceraet al., 2016) , (Benchehima et al., 2016). The WC-GGA
functional generally provides lattice constants closer to experimental values for InP, albeit with a slight
overestimation typical of GGA, while LDA tends to underestimate 'a'. Based on its reasonable agreement for
InP (Wyckoff., 1986), (Benchehima et al., 2016), the WC-GGA value for InP (a = 5.8908 A) was chosen as the
target lattice constant for the lattice-matched quaternary alloys.

Using Vegard's law , the lattice constant of Ga,In;.«BiyP;.y can be expressed as:
a(x,y) =x(1 =) - agap + ¥y~ Ggap + (1 =)L =) -app + (L — X))y " A (1)

Substituting our calculated WC-GGA binary lattice constants, we get:
a(x,y) = —0.4418x + 0.8439y + 0.0611xy + 5.8908 (A) )

Setting a(x,¥) equal to the WC-GGA lattice constant of InP (5.8908 A) yields the condition for lattice

matching:
¥ = 0.4418x/(0.0611x + 0.8439) for0 = x = 1 3)

This equation defines the specific combinations of (x, y) that result in alloys lattice-matched to InP.
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We investigated seven such compositions, denoted Q1 to Q7, corresponding to x = 0.125, 0.250, 0.375, 0.500,
0.625, 0.750, and 0.875, respectively, with corresponding y values determined by Eq. 4 (e.g., Q1: (0.125,
0.0625), Q3: (0.375, 0.1875), Q7: (0.875, 0.4375)). The calculated lattice constants and bulk moduli for these
compositions using WC-GGA are included in (Table 1). The lattice constants for these compositions are indeed
very close to 5.9 A, confirming their suitability for lattice-matched growth on InP.

Table 1. Calculated lattice constant a, bulk modulus B for binary compounds and selected lattice-matched
GaxlIn;«BiyPi.y quaternary alloys (Q1-Q7, a = 5.8908 A) using (LDA)/(WC-GGA), compared with other works.

GaxInixBiyP1y  Present work Other Works
(LDA)/(GGA-WC) Theoretical Experimental
x y a(A) B(GPa) a(A) B(GPa) a(A) B(GPa)
0(InP) O 5.8388* 71.5771* 5.830 [4], 69.437 [9] 5.809 [2] 7212]
5.8908° 67.0433° 5.896 [9],
0 1 6.6627*° 40.7901*  6.628 [4],6.526 [S], 47.6 [5], 38.3 [3] 6.5 [10], -
(InBi) 6.7347° 37.7449° 6.80 [6] 6.626
(11]
1 0 5.4063° 90.7939*  5.441[7],5.44 [8] 84.52 [7],4.43[8] 5.451[1] 88[1]
(GaP) 5.4490° 85.1140°
1 1 6.2886° 47.3768* 6.178 [5] ,6.324[3]  46.1 [5], 45.1]3] . -
GaBi 6.3540° 45.3115°%
0.125  0.0625 5.84965*  69.0690 * . - . -
5.90175°  64.8858"
0.250 0.125 5.8705% 66.4599? . - . -
5.92455°  62.1865"
0.375 0.1875 5.8873* 64.2428* . - . -
5.9425° 60.259°
0.500 0.250 5.89605*  62.7793% - - - -
5.94955 59.1181°
0.625 03125 5.90515*  61.6372° - - - -
5.96095°  57.8936"
0.750 0.375 5.9043 ¢ 60.7463* - - - -
5.9609° 57.3657"
0.875 0.4375 5.9035% 59.8525¢2 . - . -
5.9610°" 56.5951"
“calculated from LDA scheme, ® calculated from WC-GGA scheme.
[1] (Levinshtein et al., 1996) [2] (Wyckoft, 1986) [3] (Janotti et al., 2002)
[4] (Gandouzi et al., 2018) [5] (Wang et al., 2002) [6] (Liu et al., 2007)
[7] (Assali et al., 2020) [8] (Celin-Mancera et al., 2016) [9] (Benchehima et al., 2016)

[10] (Okamoto and K. Oe., 1998) [11] (Rajpalke et al., 2014)

In, Ga Bi
x> X GaBi
0,250 0.375 0,500 0,625 0,750 0,875 1,090, 0
T T >

Bismuth (Bi) concentration
Inl’1 yBl

0,000
InP 8,000 ., 0,250 0,375 0,500 0,625 0,750 0,875
Gallium (Ga) concentration
Inl —xGaxP

Figure 2. Contour map of the calculated lattice constant a (WC-GGA, in A) for GaxIn;Bi,P;y as a
function of Ga (x) and Bi (y) concentrations.

229



International Conference on Technology, Engineering and Science (IConTES), November 12-15, 2025, Antalya/Tiirkiye

In;_ GaBi o
0,125 0,375 0,500 0,625 0,750 1000, GaBi

5000

Bismuth (Bi) concentration

Gallium (Ga) concentration
lnl_xGaxP

Figure 3. Contour map of the calculated bulk modulus B (WC-GGA, in GPa) for GaxIn.xBiyP1.y as a function of
Ga (x) and Bi (y) concentrations

Figure 2 illustrates the variation of the lattice constant across the composition range, consistent with Vegard's
law. Figure 3 shows the variation of the bulk modulus.

Electronic Properties

The electronic band structures and density of states (DOS) were calculated for the lattice-matched compositions
Q1-Q7 using the EV-GGA (Engel et al., 1993) and TB-mBJ(Tran et al., 2009)potentials, with the lattice
constant fixed at the InP WC-GGA value (5.8908 A). The TB-mBJ potential generally yields band gaps in better
agreement with experimental values for III-V semiconductors.

Table 2 shows the calculated TB-mBJ band gaps (Eg). Our values for the binaries InP (1.560 eV) and GaP
(2.255 eV) agree well with experimental data (Madelung., 2004),(Vurgaftman et al., 2001) and previous
calculations (Gandouzi et al., 2018), (Celin-Mancera et al., 2016),(Jiang et al., 2013), (Camargo-Martinez et al.,
2012). The calculated band gaps for GaBi and InBi are 0.00 eV, consistent with their semi-metallic or narrow-
gap nature reported previously (Wang et al., 2002), (Figs. 4 and 5).

Table 2. Calculated band gap energies Eg (in eV) using EV-GGA and TB-mBJ potentials for binary compounds
and the lattice-matched GayIn;.xBi,Piy quaternary alloys (Q1-Q7). Comparison with other works.

GaxIniBiyPi-y Present work Other works

X y EV-GGA TB-mBJ TB-mBJ Experimental
P 0 (InP) 0 1237 1.560 141 [51,1.680 [1]  1.424 [4]
InBi 0 (InBi) 1 -0.031 0.000 0.000 [2] -
GaP 1 GaP 0 2.233 2.255 2.24 (7], 2.30 [6] 2.35 3]
GaBi 1 GaBi 1 -0.046 0.000 0.000 [2] -
Q1 Gao.125 In 0.875 Bio.os2sP 0.9375 0.994 1.360 - -
Q2 Ga 9250 In 0.750B1 0.125 Po.s7s 0.749 1.147 - -
Q3 Ga o375 In 0,625 Bi 0.1875 Po.si2s 0.563 0.994 - -
Q4 Ga ¢.500In0.500 Bi 0.250 Po.750 0.400 0.855 - -
Q5 Ga g.625 Ino.375 Bi 0.3125 Po.sg7s 0.227 0.707 : -
Q6 Ga 0.750 Ino.250 Bi 0375 Po.62s 0.105 0.606 - -
Q7 Ga ¢.875 Ing.125 Bi 0.4375 Po.s62s 0.021 0.503 - -
[1] (Gandouzi et al., 2018) [2] (Wang et al., 2002) [3] (Madelung., 2004) [4] (Vurgaftman et al., 2001)
[5] (Gazhulina et al., 2015) [6] (Jiang, 2013) [7]1 (Camargo-Martinez et al., 2012)
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Figure 4. Electronic band structure of GaP (indirect) and GaBi (direct) binaries along high symmetry directions,
calculated using TB-mBJ. Fermi level (EF) is at 0 eV.
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Figure 5. Electronic band structure of InP (direct) and InBi (direct) binaries along high symmetry directions,
calculated using TB-mBJ. Fermi level (EF) is at 0 eV
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Figure 6. Electronic band structures of lattice-matched Gayln;.x<BiyPi.y alloys for compositions Q1, Q2, and Q3
along high symmetry directions, calculated using TB-mBJ. The Fermi level (EF) is set to 0 eV.
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Figure 7. Electronic band structures of lattice-matched GaxIn1-xBiyP1-y alloys for compositions Q4, Q5,
and Q6 along high symmetry directions, calculated using TB-mBJ. The Fermi level (EF) is set to 0 eV.

The calculated band structures for compositions Q1-Q7 (Figs. 6 and 7) clearly demonstrate that all these lattice-
matched GaxIn;.<BiyP., alloys possess a direct band gap at the I" point (center of the Brillouin zone). This is
consistent with the binary constituents except GaP (Madelung., 2004) and is highly desirable for optoelectronic
applications like lasers and efficient light emitters/absorbers.

Figure 8 presents a contour map of the TB-mBJ calculated band gap. Along the lattice-matching line (Eq. 3), the
band gap energy decreases significantly as both x and y increase. The calculated electronic band gap ranges
from 1.360 eV (for QI1, x=0.125, y=0.0625) down to 0.503 eV (for Q7, x=0.875, y=0.4375). This tunable band
gap corresponds to wavelengths ranging from approximately 0.911 um to 2.456 um. This range effectively
covers the important telecommunication wavelengths of 1.3 um and 1.55 pm.
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Figure 8. Contour map of the calculated direct band gap energy Eg (TB-mBJ, in eV) for GaIn;«Bi,P.yas a
function of Ga (x) and Bi (y) concentrations.
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Figure 9.Total and partial density of states (TDOS/PDOS) for the lattice-matched quaternary alloy Q4
(Gao.s00Ino.500Bi0.250P0.750), calculated using TB-mBJ. EF is at 0 eV.
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The total and partial density of states (TDOS/PDOS) provides further insight. (Figure 9) shows the DOS for
composition Q4 as an example. The valence band (VB) consists of regions dominated by Bi-s, P-s states at
lower energy (VBo, ~-11.5 to -8.9 eV), hybridization of Ga-s, In-s, P-p states (VBi, ~-5.6 to -3.6 e¢V), and
primarily Bi-p, P-p states near the VBM (VB,, ~-3.6 eV to EF). (CB) region is formed by mixture of (s, p) states
of (Bi- Ga- In- P) atoms, d states of (Bi- Ga- In) atoms and f states of Bi atom. The conduction band minimum
(CBMin) is mainly formed by s states of Bi, Ga, and P atoms. The incorporation of Bi significantly influences
the position of both the valence band maximum (VBM) and the CBMin, leading to the observed band gap
reduction.

Optical Properties
The optical properties of the lattice-matched GaxIn;xBiyPi.y alloys (Q1-Q7) and their binary constituents were
calculated using the TB-mBJ potential (Tran et al., 2009).

Complex Dielectric Function e(w)

The complex dielectric function e(w) = &, (w) + ie;(w)is fundamental for describing optical response (Adachi,
2009). ;5(w) is calculated directly from electronic structure, and £, (w) is obtained via the Kramers-Kronig

relation (Adachi, 2009), (Slimani et al., 2019) , (Bouragba et al., 2020).

4m?e?

e2() = (Toz) Ty [UIMIN?f (1= S (E; — B — a)dk,  (4)
e(w)=1+2p [0 4y s)

0 w'?—w?

Real part Imaginary
26 T

GaP'
GaBi

InP

0

0 2 4 6 8 10 12 14
Photon energy (eV) Photon energy (eV)
Figure 10. Calculated real (1) and imaginary (e2) parts of the complex dielectric function for the binary
compounds InP, InBi, GaP, GaBi, using the TB-mBJ scheme.

The calculated dielectric functions for the binaries (Figure 10) are consistent with known features. For the
quaternaries (Figures 11, 12), the static dielectric constant €:(0) (Table 3) increases as x and y increase (i.e., from
QI to Q7), which is consistent with the Penn model (Penn, 1962) where €:(0) is inversely related to the square
of the band gap (Eg). The imaginary part €2(®) shows critical points (peaks denoted Eo, Ei, E2, Es in Table 3)
associated with direct electronic transitions between VB and CB states. The first critical point Eo corresponds to
the fundamental absorption edge (the band gap Eg). As seen in (Table 3), Eo (derived from ex(®) peaks)
decreases steadily from Q1 to Q7, following the trend of the calculated band gaps (Table 2).
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Figure 11. Real part (1) of the dielectric function for the lattice-matched GaIni.BiyPi., (Q1-Q7) as a function
of photon energy, calculated using TB-mBJ.
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Figure 12. Imaginary part (&) of the dielectric function for the lattice-matched GaxIn;.«BiyPi., (Q1-Q7) as a
function of photon energy, calculated using TB-mBJ.

Table 3. Calculated critical point energies (Eo, E1, E2, Es in V) from e2(®) spectra and the static dielectric
constant €:1(0) for binaries and lattice-matched GaxIni«Bi,Pi.y alloys (Q1-Q7), using TB-mBJ.

GaxIni«BiyPi1.y Present work Other works
X Eo E: Ez E; €1(0) Eo E1 Ez E; €1(0)

0(InP) 1.56 1.825 3246 476 8320 1.570[1] - 3284 [1] 4.760[1] 8318 [1]
0(InBi) 0.00  1.675 3.551 4.623 21,019 - - - -

1(GaBi 0.00 1734 3.643 518 21,940 -

1GaP 2255 2421 3.646 4973 7,908  2.245[2]
0.125  1.541 1.836 3.327 4702 8.763 -

0.250  1.125 1.649 2247 4.622 9267 - - - - -
0375 0997 1.544 3.094 4567 9.796 - - - - -
0.500  0.663 1.381 2.698 4.516 10.296 - - - - -
0.625  0.635 1264 2616 4376 10.965 - - - - -
0.750 0508 1.229 2.547 4341 11.547 - - - - -
0.875 0301 1.125 2477 4294 12246 - - - - -

3.980 2] 5.041 2] 8.024[2]

[1] (Benchehima et al., 2016) [2] (Hachemi et al., 2022)
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Complex Refractive Index

The refractive index n(w) and extinction coefficient A(w) are derived from g(®) (Adachi, 2009), (Benchehima et
al., 2017), (Benchehima et al., 2018) :

e2 (w)+e2 (w2 +ey (w
(@) :J( 2 () 2(2)) 1(@) ©)
3 (@)2 +£3(w) )% -2y (w
k(w) = (ef(w)2+e3(w)?) 1(@) 7
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Figure 13. Calculated refractive index n(®) and extinction coefficient k(®) for binary compounds, using TB-
mBJ.
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Figure 14. Refractive index n(w) for the lattice-matched GaxIni«BiyP1.y alloys (Q1-Q7), calculated using TB-
mBJ.
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Figure 15. Extinction coefficient k(@) for the lattice-matched Galn;.<BiyPi.y alloys (Q1-Q7), calculated using
TB-mBJ.

(Figures 13-15) show n(®) and k(w). The static refractive index n(0) = \ei(0) (Table 4) also increases with
increasing x and y content (from Q1 to Q7), consistent with the trend in €:1(0) and the decreasing band gap. The
calculated n(0) values for InP and GaP are in good agreement with experimental(Asadi et al., 2019) and other
theoretical results (Benchehima et al., 2016), (Hachemi et al., 2022) , (Asadi et al., 2019), (Ahuja et al., 1997).
The spectra show characteristic peaks related to the critical points in the electronic structure.

Table 4. Calculated static refractive index 7(0) for binaries and lattice-matched GaxIn;«BiyPi.y alloys (Q1-Q7),
compared with other work.
n(0) refractive index

Compound

Present work Others work
GaxIni«BiyP1y TB-mBJ Theoretical Experimental
X y
0 (inp) 0 2.884 2.884 [1], 2.81 [5] 2.70 [3]
0 (InBi) 1 4.586 - -
1 (GaP 0 2.812 2.832 [2], 2.83 [4] -
1 GaBi 1 4.685 - -
0.125 0.0625 2.960 - -
0, 250 0.125 3.044 -
0.375 0.1875 3.129 -
0.500 0.250 3.208 - -
0.625 0.3125 3.311 - -
0.750 0.375 3.398 -
0.875 0.4375 3.499 -
[1] (Benchehima et al., 2016) [2] (Hachemi et al., 2022) [3] (. Meiners, 2022)
[4] (Asadi et al., 2019) [5] (Asadi et al., 1997)

Optical Conductivity and Absorption Coefficient
Optical conductivity o(®) and absorption coefficient a(w) are related to &(®) and k(®) (Adachi., 2009):

o(w) = 2 e(w) @®)
a(w) = k(w) O]

where / is the wavelength in vacuum.
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The optical conductivity and absorption coefficient are presented in (Figures 16-18). The onset of absorption
corresponds to the fundamental band gap Eg (or Eo). For the quaternary alloys, the absorption edge shifts to
lower energies as x and y increase, reflecting the decreasing band gap. The maximum absorption peaks for the
quaternaries occur around 6.02 = 0.6 eV, shifting slightly to lower energies and decreasing in intensity as x and
y increase. The quaternaries show strong absorption in the visible and near-infrared regions (above ~2 eV).

Optical Band Gap

To quantify the optical band gap , Tauc plots were constructed(Tauc et al., 1966), (Rahimi et al., 2022)
assuming that the energy-dependent absorption coefficient @ (w) can be expressed by the following

relationship
a(w)hv = B(hv — E;p)n (10)

Where B is a constant for a direct transition, kv is the photon’s energy, E; P is the optical band gap and « is
the optical absorption coefficient and n refers to an index (n = %2 for direct gap or n=2 for indirect gap).

The optical band gap is obtained by extrapolating the linear portion of the (ahv)? and (hv)plot to the value

(ahv)? =0.
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Figure 19.Tauc plots (ahv)? vs. photon energy (hv) for determining the direct optical band gap of lattice-matched
GaxIni.«BiyPi.y alloys (Q1-Q7), based on TB-mBJ calculations.

Figure 19 shows the Tauc plots for the lattice-matched quaternary compositions. The determined direct optical
band gaps are 1.375, 1.230, 1.135, 1.047, 0.938, 0.862, and 0.803 eV for Q1 through Q7, respectively. These
values confirm the trend of decreasing band gap with increasing Ga and Bi concentration along the lattice-
matching line, consistent with the electronic band gap calculations (Table 2) and Eo values from &2(w) (Table 3).
This tunable optical gap covers the wavelength range from ~0.9 pm (for QI) to ~1.56 um (for Q7), again
highlighting the relevance for telecommunications.

Conclusion

239



International Conference on Technology, Engineering and Science (IConTES), November 12-15, 2025, Antalya/Tiirkiye

This theoretical study, based on first-principles DFT calculations using the FP-LAPW method (Blaha et al.,
2019), has investigated the structural, electronic, and optical properties of GaxInBiyPiyquaternary alloys
specifically designed to be lattice-matched to InP substrates. Key findings include:

e The WC-GGA functional (Wu et al., 2006) accurately predicts lattice constants. Compositions satisfying
the derived lattice-matching condition (Eq. 3) exhibit lattice parameters close to that of InP (~5.9 A) based
on WC-GGA calculations (Table 1), suitable for epitaxial growth.

e All investigated lattice-matched GaxIn;<BiyPi.y alloys possess a direct band gap at the I" point (Figs. 6, 7).
The band gap energy (calculated via TB-mBJ(Blaha et al., 2019)) is highly tunable by adjusting the Ga (x)
and Bi (y) fractions along the lattice-matching constraint, ranging from 1.360 eV (Q1) down to 0.503 eV
(Q7) (Table 2). This corresponds to a wavelength range of 0.91 um to 2.46 pum.

e The optical constants (dielectric function, refractive index, absorption coefficient) were calculated using the
TB-mBJ scheme (Figs. 10-18). The fundamental absorption edge shifts to lower energies with increasing x
and y, consistent with the electronic band gap trend. Tauc analysis (Tauc et al., 1966), (Rahimi et al., 2022)
yielded direct optical band gaps decreasing from 1.375 eV (Q1) to 0.796 eV (Q7) (Fig. 19), corresponding
to wavelengths from ~0.9 um to ~1.56 um.

o The results demonstrate that GaxIn;<BiyPiy alloys lattice-matched to InP offer significant flexibility in
tuning the optoelectronic response. The ability to achieve direct band gaps spanning near-infrared
wavelengths (~0.9 um to ~2.5 um based on electronic gap calculations) while maintaining lattice matching
makes this material system highly attractive for optoelectronic device applications. It is particularly
promising for lasers and photo detectors operating in the 1.3 pm and 1.55 pm telecommunication windows.

This theoretical work provides valuable data and insights for the future development and optimization of
GayIn«BiyPi/InP based devices.
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