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Abstract: Cordierite ceramic still attracts great interest due to its interesting properties for applications in the 

field of modern engineering. It is one of the few ceramics that undergoes extremely low thermal expansion, less 

than 0.001% in the wide temperature range 25 ‒ 800°C. This work aims to synthesize stoichiometric cordierite 

ceramics according the following molecular formula: Mg2Al4Si5O18, from a single kaolin (Al2Si2O5(OH)4), that 

is chemically modified by acid leaching. The chemical modification of the kaolin is carried out in a hydrochloric 

acid solution (6M), at a temperature of 70°C, under magnetic stirring for 2 hours. These optimized acid leaching 

conditions increase the Si/Al ratio of kaolin, and thus allow a stoichiometric mixture of cordierite, by adding the 

precipitated magnesium hydroxide. Thermal transformations of the starting mixture in the temperature range 

1100 ‒ 1430°C reveals the appearance of several phases, such as sapphirine and enstatite, before the cordierite 

becomes predominant at 1250°C. These intermediate phases have higher densities than that of cordierite, and 

thereby their transformations to cordierite phase are accompanied by swelling, which usually causes cracking in 

the ceramic. Therefore, the densification of structural ceramics is carried out from stoichiometric cordierite 

powders calcined at 1250°C by solid phase sintering and from the starting mixture by reaction sintering for 

comparison of the ceramic properties. The results show that in the first case, the maximum densification reaches 

92% at 1325°C and then decreases to 78% at 1430°C, due to the formation of a glass phase, and in the second 

case, the densification reaches 90% at 1325°C, and at 1350°C its becomes very close to the total densification 

(~95%). The thermal expansion coefficient a (from RT to 700 °C) decreases with increasing sintering 

temperature;  = 3.1x10-6 °C-1 at 1275°C, and becomes <1.7x10-6 °C-1 at 1400°C.  
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Introduction 

 

Cordierite ceramics still arouses a lot of interest because of its many very interesting properties in the field of 

modern engineering (Chowdhury et al., 2007a, 2007b). Its thermal expansion is extremely low (<0.001%), and 

its mechanical strength is high (>245MPa), which gives it excellent resistance to thermal shocks. Its use 

temperature exceeds 1200°C, cordierite is often found in many refractory products such as burner tubes and 

firing supports for ceramic industry furnaces with fast firing cycles (Ponomarev et al., 2023; Guangmao Yan et 

al., 2024; Cheraitia et al., 2020). 

http://www.isres.org/
https://ceramics.onlinelibrary.wiley.com/authored-by/Yan/Guangmao
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Cordierite also has low dielectric constants (~5) and dielectric losses (tg<10-3) over a wide frequency interval, 

which allows for applications in the electrical industry, electronics in the production of electrical insulators, of 

substrates, and electronic components (Tekin et al., 2022). Recently studies have shown that cordierite is 

promising in high frequency applications (Cao et al., 2025; Synkiewicz et al, 2021), and in heat storage (Deng et 

al, 2024), (Boutaleb et al, 2024).  

 

The stoichiometric cordierite is well defined by the SiO2-Al2O3-MgO ternary diagram system with the 

following centesimal chemical composition: 51.36%SiO2.34.86%Al2O3.13.78%MgO, and a SiO2/Al2O3 ratio 

= 1.47. The conventional method of synthesis of pure cordierite involves reacting at high temperature a mixture 

of oxides of SiO2, MgO, and Al2O3 corresponding to the chemical composition. These synthetic and pure oxides 

make it possible to produce a highly densified ceramic at a very high temperature (~1430°C) close to the 

melting temperature of theoretical cordierite (1470°C) (Kobayashi et al., 2000). Also many attempts at synthesis 

of cordierite are developed from available and less expensive natural materials, such as kaolin (Kobayashi et al, 

2000), talc [16], sepiolite (Zhou et al, 2011), stevensiste (Bejjaoui et al., 2010), and many other materials 

carrying the constituent elements of cordierite. Often, these starting mixtures must be composed of several 

ingredients (kaolin, talc, silica, magnesium compounds...) to succeed in a stoichiometric cordierite. The acid 

leaching of kaolin (RSiO2/Al2O3<1,20) is ideally suited to modify RSiO2/Al2O3, by hydrolyzing kaolinite 

(Al2O3.2SiO2.2H2O) into soluble aluminium and amorphous silica (Al-Harahsheh et al., 2023; Peng et al, 2021; 

Edama et al, 2014). An optimized chemical treatment will synthesize pure cordierite by adding a suitable 

magnesium compound. 

 

On the other hand, the densification of ceramics remains insufficient due to the presence of impurities which 

lead to the formation of vitreous phases at high temperatures and thus lower densification. In addition, the 

crystallization of cordierite in these cases occurs from intermediate phases such as mullite, sapphirine, 

clinoenstatite, and spinel (Redaoui et al., 2018; Cameruccia et al., 2003; Khattab et al, 2021). These phases have 

densities much higher than that of cordierite, their transformations into cordierite can generate microcracks in 

the ceramic, which requires a delicate and complex thermal cycle to achieve a densification without defects. To 

avoid this handicap, Ogiwara et al developed highly densified ceramics from calcined cordierite powder using 

pure oxides, but such studies remain few (Ogiwara et al., 2010). 

 

This research studies the possibility of synthesizing stoichiometric cordierite from a single kaolin which is 

chemically modified by an acid leaching, and to perform a comparison of the ceramic properties of cordierites 

prepared by reaction sintering from the starting mixture, and those prepared from previously calcined cordierite 

powders. 

 

 

Method 

 

Raw Materials 

 

The kaolin used in this study is taken from a deposit located in eastern Algeria in the region of Djebel Debbagh. 

This kaolin is known for its black coloration which is caused by a manganiferous mineral; todorokite (Mn,Ca ) 

Mn5O11n4H2O) (Senoussi et al., 2016; Boulmokh et al., 2007; Debbakh et al, 2020). To increase the clay 

mineral content and decrease the sand content, the kaolin DD is sieved by liquid process, under 20 microns and 

the obtained fraction is designated by DD00. The magnesium is prepared in the form of hydroxide (Mg(OH)2) 

by precipitation from a solution of magnesium chloride and ammonium hydroxide, with commercial reagents. 

 

 

Controlled Acid Leaching Method 

 

The controlled acid leaching tests are carried out in a flat-bottomed flask, fitted with a thermometer and a 

refrigerant, which is installed on a heating plate equipped with magnetic agitation. The same conditions are 

maintained for all experiments; a solid/liquid ratio is 1:5, molarity of 6M HCl, rotation speed of 450rpm, and 

duration of 6 hours. The leaching is stopped with a large quantity of distilled water, and the solid is washed 

several times with distilled water until a neutral pH is obtained, then dried at 100°C in an oven to constant 

weight. Five experiments are conducted at temperatures of 25°C, 50°C, 60°C, 70°C, and 90°C; the fractions of 

processed DD00 are designated DD25, DD50, DD60, DD70, and DD90 respectively. 

 

 

Preparation of Cordierite Ceramic Samples 

https://ceramics.onlinelibrary.wiley.com/authored-by/Tekin/C.
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Pellets (:13x2,5mm) are prepared by hydraulic pressing (50MPa) from the leached kaolin having the optimal 

SiO2/Al2O3 ratio for obtaining a stoichiometric cordierite, adding the precipitated magnesium hydroxide. The 

starting mixture is previously crushed by attrition in ethyl alcohol in the presence of zirconia beads (2 to 3mm) 

during 120mn. Sintering of pellets are performed at different temperatures, from 1100°C to 1430°C to determine 

the optimal temperature of cordierite synthesis, and from calcined powder which is ground in the same way as 

previously. 

 

 

Characterization 

 

The chemical compositions of the raw materials and of the leached kaolin were carried out using a Rigaku ZSX 

Primus X-ray fluorescence spectrometer. The identification of crystalline phases of sintered pellets was 

performed by XRD analysis using a Philips X'Pert Pro (CuK = 1,54056Å) diffractometer, with a continuous 

scan from 5 to 80°. The characterization is continued by the simultaneous thermal analysis DSC-TGA (STA 

Netszch 409PC luxx), and the dilatometer (Nezscth 409PC), with a heating rate of 10°C/min between room 

temperature and 1400°C. The microstructural observations of the ceramics were performed by a scanning 

electron microscope (SEM) of the type JSM-6360LV. The bulk density (dap), water absorption (Abs), and bulk 

specific gravity (dsp) were determined using a method based on the principle of Archimedes recommended by 

the American company for testing and determining the specifications of materials ASTM C373 (ASTM 

Specification C373). The dielectric characteristics are performed on metallized ceramics using an Agilent 

HP4192A impedance analyser over a frequency range of 100Hz to 8MHz. 

 

 

Results and Discussion 
 

The Chemical Modifications of the Kaolin DD  

 

Table 1 shows the chemical compositions of treated DD kaolin samples, prepared magnesium hydroxide 

(HMP), and synthesized cordierite (CR). It is noted that below 50°C, SiO2/Al2O3 remains unchanged, but at 

higher temperatures this ratio increases sharply, and for >90°C this ration is multiplies by 3, which shows that 

more than 50% of kaolin is dissolved. It is clear that temperature is a predominant parameter in the leaching of 

kaolin (Edama et al., 2014; Al-Harahsheh et al., 2023).  The halloysite network undergoes leaching through the 

release of soluble Al3+ and insoluble amorphous silica (White et al., 2018). 

 

It is also noted that MnO strongly decreases under the effect of acid action, certainly because of the leaching of 

the todorokite which results in the reduction of Mn4+, and Mn3+ into Mn2+ which are perfectly soluble in acidic 

solutions (Manish Kumar et al., 2019; El Hazek et al., 2006). According to these results, it is deduced that the 

conditions that allow for having the optimal SiO2/Al2O3 (1,48) for a stoichiometric mixing of cordierite are 

those of DDT70, with 86.3%DDT70 + 13.7%HMP. 

 

Table 1. Chemical compositions of kaolin samples treated at different temperatures 

  DD00 DDT25 DDT50 DDT70 DDT90 HMC CR 

SiO2 52,52 54,40 54,42 58,57 75,50 0,18 50,90 

Al2O3 41,61 44,30 44,60 39,56 23,25 0,00 34,36 

MnO 3,41 0,14 0,11 0,18 0,02 0,00 0,16 

MgO 0,65 0,45 0,21 0,25 0,20 98,15 13,62 

K2O 0,17 0,12 0,08 0,08 0,09 0,06 0,07 

Na2O 0,25 0,05 0,04 0,08 0,05 0,48 0,07 

SO3 0,48 0,15 0,17 0,08 0,13 0,38 0,12 

CaO 0,45 0,22 0,16 0,14 0,09 0,15 0,07 

Fe2O3 0,15 0,11 0,09 0,10 0,10 0,17 0,12 

NiO 0,20 0,01 0,01 0,12 0,03 0,00 0,01 

Others <0,10 <0,10 <0,10 <1,00 <0,50 <0,50 <0,50 

SiO2/Al2O3 1,26 1,23 1,22 1,48 3,25     ----                 ---- 

 

 

Cordierite Synthesis 
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The XRD diffractograms performed on ceramics prepared from the optimized starting mixture are reported in 

Figure 1. At 1100°C, several phases are identified such as sapphirine (00-011-0607), quartz (01-089-8946), 

spinel (01-086-0084), and clionenstatite (01-084-0652).  At 1150°C, only sapphirine and cordierite persist with 

a ratio of 75%:25%. At 1200°C, we detect the appearance of a reflection at 10.60° which may be related to 

cordierite (96-900-5806), with many reflections that may be related to sapphirine (00-021-0549). At 1250°C, the 

majority of the reflections can be attributed to cordierite (00-009-0326), or indialite (01-082-1884), with some 

reflections that reveal the presence of sapphirine (01-071-2398), and the mass ratio becomes 90% :10% 

respectively. At 1275°C, only cordierite (01-089-1485) is identifiable whereas sapphirine has certainly 

completely disappeared in favor of cordierite, the presence of cristobalite (01-082-1410) (<1%) is noted. 

Beyond this temperature, cordierite becomes predominant, but at 1400°C, we notice the presence of a significant 

glass phase, certainly due to the presence of fluxing elements that are always present in the kaolin. 

 

Simultaneous thermal analysis (DSC-TGA) of the optimized starting mixture shows that dehydroxylization of 

HMP occurs around 376°C, and that of halloysite around 512°C yielding MgO and Al2Si2O7 (metakaolin) 

respectively (Figure 2).  The formation of an exothermic peak at 932°C confirms the interaction between 

Magnesium oxyde and metakaolin to form new phases like cordierite, sapphirine (Mg6Al6.5Si1.5O20), and 

clinoenstatite (MgSiO3). A second exothermic peak occurs around 1200°C which translates the crystallization of 

orthorhombic cordierite from the other phases, in accordance with the XRD analysis (Figure 1). 

 

The thermodidimensional analysis of the pressed starting mixture shows many linear shrinkages, (1) of 400-

800°C due to dehydroxilation of halloysite, (2) of 800-1000°C accompanying chemical reactions of new 

compounds, and (3) of 1000-1150°C probably to sintering of these phases (Figure 3). A swelling is remarkable 

from 1150°C to 1300°C, this thermodidimensional feature can be attributed to the crystallization of cordierite 

from phases such as sapphirine, and clinoenstatite.  These crystalline phases have higher densities (>3g.cm -3) 

than that of cordierite (2.52g.cm-3), their transformation certainly leads to the increase in the volume of the 

ceramic. An unsuitable thermal cycle can lead to microcracking in ceramics. 

 

 
Figure 1. XRD patterns of calcined starting mixture at different temperature 

(c) cordierite, (CE) clinoenstatite, (S) sapphirine, (Q) quartz, 
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Figure 2. (a) DSC-ATG, and (b) Thermo-dimensional analysis of starting mixture 

 

 

Sintering 

 

The densification results of the starting mixture and of calcined cordierite powder are presented in figures 3. In 

the first case, at 1100°C densities (dap, dsp) higher than the theoretical density of cordierite (2.52g/cm3) are 

observed, this result confirms the results of the DRX analysis (Figure 1). The ceramic is composed mainly of 

sapphirine, spinel, and clinoenstatite which have higher densities. From 1200 to 1350°C, the bulk density 

decreases more significantly than the specific density which remains unchanged (~2.50g/cm3), this is the 

temperature range of cordierite crystallization. From 1400°C, the two densities decrease strongly, and the water 

absorption increases strongly, and 1425°C dap < 2.00g/cm3.  certainly because of the increase in porosity, and 

the formation of vitreous phases. 

 

In the case of calcined powder of cordierite (indirect sintering), the bulk density increases with temperature, it 

reaches a maximum value of 2.35g/cm3 at 1425°C, with 5% water absorption. While the specific density which 

is that of prepared cordierite decreases slightly with temperature, certainly because of the glassy phases of 

impurities. 
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Figure 3. Physical properties of ceramic as a function of sintering temperature 

(a) Direct sintering (b) Indirect sintering 

 

 

Dilatometric Curves of Cordierite 

 

 
Figure 4. Dilatometric curves of cordierite sintered at different temperatures 
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Figure 4 shows the expansion curves of sintered cordierite ceramics at increasing temperatures. It is remarkable 

that the coefficient of linear expansion (TEC) decreases significantly with the increase in sintering temperature. 

This result seems to confirm that the maturation of cordierite always occurs at a temperature close to fusion of 

cordierite (~1450°C), (Chowdhury et al., 2007a, 2007b). 

 

 

Dielectric Properties 

 

The results of dielectric characterizations are reported in Figure 5. The same behaviour is observed in both cases 

of ceramics prepared by direct sintering (Figure 5a) and those prepared by indirect sintering (Figure 5b). The 

dielectric constants (r) vary little significantly over a wide frequency interval, while the dielectric losses (tg) 

decrease markedly with frequency. The values of r and tg are consistent with the values of industrial cordierite 

ceramics 5 and 0,025 at 1MHz respectively. 
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Figure 5. Dielectric constants and losses as a function of frequency (a) direct sintering, (b) indirect sintering 

 
 
Microstructure 

 

The microstructural observations of sintered ceramics at 1430°C show, in the case of direct sintering 

(Figure.6a,b), a greater presence of pores than in the case of indirect sintering (Figure.5d,e). In both cases, the 

vitreous phase is clearly apparent. 

 

 
Figure 6. Microstructures of sintered ceramics at 1430°C 

(a,b) direct sintering, (c,d) indirect sintering 
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Table 2 summarizes the physical and dielectric properties of sintered ceramics at 1430°C, obtained according to 

both methods. It is noted that the reaction sintering method does not allow obtaining highly dense ceramics due 

to the presence of melting elements contained in the kaolin, whereas the calcined powder sintering method 

allows for increasing the density of the ceramics to 2,38g.cm-3, which is equivalent to a densification rate of 

~95%. 

 

Table 2: Comparison of the ceramic properties of the 2 methods 

Properties Starting mixture 

Direct sintering 

Calcined mixture 

Indirect sintering 

Sintering temperature (°C) 

Bulk density (g/cm3) 

Specific density 

Water absorption 

Open porosity 

1430 

2,00 

2,15 

2,28 

4,92 

1430 

2,38 

2,50 

5,37 

11,46 

Thermal expansion coefficient (TEC) 

x10-6°C-1 (RT to 1000°C) 

 

1,67 

 

1,72 

Dielectric constant   (1MHz) 

Loss tangent            (1MHz) 

Dielectric constant   (8MHz) 

Loss tangent            (8MHz 

6,06 

0,032 

6,09 

0,025 

6,09 

0,034 

6,04 

0,020 

 

 

Conclusion  
 

This study allowed the synthesis of stoichiometric cordierite from a single kaolin that is chemically modified by 

controlled acid leaching. The optimal conditions of leaching with HCl (6M), a temperature of 70°C, and a 

duration of 120 minutes allowed to modify the SiO2/Al2O3 ratio and thus succeed in a stoichiometric mixture of 

cordierite, by adding precipitated magnesium hydroxide. 

 

The study of thermal transformations of the starting mixture reveals the appearance of several phases, such as 

sapphirine and enstatite, before cordierite became predominant at 1250°C. These intermediate phases have 

higher densities than that of cordierite, and consequently their transformations in the cordierite phase are 

accompanied by swelling, which generally causes cracks in the ceramic. 

 

The comparison of the physical properties of ceramics sintered from the starting mixture (direct sintering) and 

from cordierite powder pre-calcined at 1250°C (indirect sintering) shows that in the case of direct sintering, 

densification cannot reach that of theoretical cordierite (dth) due to the formation of glass phases. In the case of 

indirect sintering, densification approaches dth and reaches 94% at 1430°C. 
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