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Abstract: Artificial intelligence (AI) is reshaping drug discovery by enabling efficient and precise
identification of novel therapeutics. This review examines the synergistic use of deep generative models, such as
Long Short-Term Memory (LSTM) networks, Variational Autoencoders (VAEs), and Graph Attention
Networks (GATs), together with evolutionary optimization techniques, including genetic algorithms and multi-
objective evolutionary strategies. While deep learning architectures excel at capturing complex molecular
representations and generating chemically valid compounds, evolutionary algorithms provide complementary
strengths in global exploration and multi-objective trade-off optimization. The combination of these two
paradigms offers a powerful and complementary toolkit: deep learning provides the capacity to learn rich
chemical features and propose innovative scaffolds, whereas evolutionary methods ensure efficient navigation
of chemical space and balanced optimization across multiple drug-like criteria. Through comparative analyses,
quantitative benchmarks, and illustrative figures, we highlight how integrating generative and evolutionary
paradigms can accelerate de novo molecular design, reduce development timelines, and lower costs. We also
address technical and ethical challenges. In particular, our ongoing research explores hybrid frameworks that
combine variational autoencoders, graph neural predictors, Colibri algorithm and Genetic algorithms with
fragment-based crossover, and dynamic multi-objective penalties to further enhance chemical validity,
pharmacological relevance, and synthetic accessibility. Future efforts aim to demonstrate that such hybrid
frameworks can bridge the gap between theoretical innovation and practical drug development, bringing Al-
driven discovery closer to real-world therapeutic breakthroughs.

Keywords: Drug discovery, Molecule design, Deep generative models, Evolutionary algorithms, Multi-
objective optimization.

Introduction

Drug discovery is a cornerstone of biomedical innovation but remains an extremely costly and time-consuming
endeavor, often requiring over a decade and billions of dollars to bring a single drug to market (DiMasi,
Grabowski, & Hansen, 2016). Despite advances in computational chemistry and high-throughput screening,
attrition rates in clinical trials remain high due to issues of efficacy, toxicity, and poor pharmacokinetics (Paul et
al., 2010). These challenges underscore the urgent need for more efficient strategies capable of exploring the
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vast chemical space, estimated to contain up to 10% drug-like molecules, while simultaneously optimizing
multiple therapeutic objectives (Polishchuk, Madzhidov, & Varnek, 2013).

Conventional in silico approaches, such as docking and quantitative structure—activity relationship (QSAR)
models, provide valuable predictive tools but often suffer from limited generalizability, high dependence on
prior knowledge, and poor scalability when faced with unprecedented chemical scaffolds (Schneider et al.,
2020). Similarly, in vitro assays, although indispensable for experimental validation, are labor-intensive,
expensive, and inherently sequential, restricting their ability to explore chemical diversity at scale (Vamathevan
et al., 2019). The fragmentation between computational predictions and experimental testing continues to delay
the discovery of effective therapeutics, highlighting the need for integrated frameworks that are both exploratory
and optimization-oriented.

Recent progress in artificial intelligence (Al) has introduced generative models, such as variational autoencoders
(VAE?s), generative adversarial networks (GANs), and graph neural networks (GNNs), which can learn complex
molecular distributions and design novel compounds with promising drug-like properties (Zhavoronkov et al.,
2019; Blaschke et al., 2020). These models excel in capturing latent chemical features and generating
structurally valid molecules, but often struggle with balancing multiple objectives, such as potency, selectivity,
and synthetic accessibility. Evolutionary algorithms (EAs), by contrast, are particularly effective at global
exploration and multi-objective optimization, using mechanisms like mutation, crossover, and selection to
iteratively refine candidate solutions (Brown et al., 2019). Integrating deep generative models with EAs offers a
synergistic paradigm: the former drives innovation by proposing diverse molecular scaffolds, while the latter
ensures efficient navigation of chemical space and optimization across competing therapeutic criteria (Nigam et
al., 2022). This hybridization promises not only to accelerate de novo molecular design but also to reduce
attrition rates and shorten development timelines, ultimately transforming Al-driven drug discovery.

The remainder of this paper is organized as follows. Section 2 provides an overview of deep generative models
for molecular design, including recurrent neural networks, variational auto-encoders, generative adversarial
networks, and graph-based models, highlighting their respective strengths and limitations. Section 3 discusses
evolutionary optimization methods, with an emphasis on genetic algorithms, multi-objective strategies, and
chemically valid genetic operators tailored to drug discovery. Section 4 explores the synergy between generative
models and evolutionary algorithms, presenting hybrid frameworks, case studies, and benchmark comparisons,
as well as illustrative workflows. Section 5 outlines future research directions, focusing on dynamic multi-
objective penalties, integration with reinforcement learning, and the development of fully automated, closed-
loop drug discovery pipelines. In addition, Section 6 highlights our contributions to AI-Driven drug discovery
with novel methodological innovations. Finally, Section 7 concludes the paper with a synthesis of key insights
and perspectives on the role of hybrid generative—evolutionary paradigms in accelerating Al-driven molecular
design.

Deep Generative Models for Molecular Design

The emergence of deep generative models has profoundly transformed de novo molecular design, enabling the
automated generation of structurally valid and pharmacologically relevant compounds (Table. 1). By learning
latent representations of chemical space, these models provide scalable frameworks to design molecules with
desired physicochemical, biological, and pharmacokinetic properties. The following subsections review the
most prominent generative architectures employed in molecular design.

Recurrent Neural Networks (RNNs, LSTM, GRU)

Recurrent neural networks (RNNs) and their gated variants: Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU), have been widely adopted for sequence-based molecular generation, typically using
SMILES (Simplified Molecular Input Line Entry System) representations (Olivecrona et al., 2017). These
models leverage sequential dependencies to learn syntax and semantics of chemical strings, ensuring the
generation of syntactically valid SMILES. LSTMs are particularly effective at capturing long-range
dependencies, reducing the risk of invalid outputs, while GRUs provide computational efficiency without
significantly compromising accuracy (Gupta et al., 2018). However, SMILES-based models remain sensitive to
syntax errors, and their reliance on a single linear representation of molecules can limit structural diversity.
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Variational Autoencoders (VAEs)

Variational autoencoders (VAEs) introduced probabilistic latent representations into molecular design, enabling
interpolation and continuous optimization in chemical space (Kingma & Welling, 2014). In this framework,
molecules are encoded into a latent vector space and decoded back into valid molecular structures, which
facilitates property-driven optimization via gradient-based methods (Gémez-Bombarelli et al., 2018). VAEs can
also incorporate chemical constraints and multi-objective loss functions to balance validity, novelty, and
synthetic accessibility (Jin et al., 2018). Nevertheless, VAEs often suffer from posterior collapse and low
reconstruction fidelity, particularly for complex molecular graphs, which has motivated hybridization with
graph neural networks and reinforcement learning strategies (Winter et al., 2019).

Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) employ a competitive setup between a generator, which proposes
candidate molecules, and a discriminator, which distinguishes between real and generated samples (Goodfellow
et al., 2014). In molecular design, GANs have demonstrated strong potential for producing chemically diverse
scaffolds while aligning outputs with drug-like distributions (Kadurin et al., 2017). Advanced implementations,
such as ORGAN (Objective-Reinforced GAN), integrate reinforcement learning to steer generation toward
molecules with optimized bioactivity (Guimaraes et al., 2017). Despite their promise, GANs remain difficult to
train due to instability, mode collapse, and the challenge of ensuring strict chemical validity.

Graph Neural Networks (GNNs, GATs)

Graph neural networks (GNNs) represent molecules as graphs, where atoms correspond to nodes and bonds to
edges, allowing direct learning from molecular topology (Gilmer et al., 2017). Variants such as Graph
Convolutional Networks (GCNs) and Graph Attention Networks (GATs) enhance molecular representation by
capturing both local and global structural dependencies (Velickovic et al., 2018). Recent advances in graph-
based generative models, such as GraphVAE and GraphAF, enable the direct generation of molecular graphs,
bypassing SMILES limitations (You et al., 2018; Shi et al., 2020). These models demonstrate superior
performance in terms of validity, novelty, and scaffold diversity. However, challenges remain in balancing
efficiency with expressiveness, as graph-based generation is computationally intensive and requires
sophisticated decoding strategies.

Figure 1 summarizes the major classes of deep generative models applied in de novo molecular design. Each
architecture provides a distinct strategy for navigating chemical space and balancing structural validity, novelty,
and property optimization.

Deep Generative Models
for Molecular Design

RNNs /LSTM / GRU VAEs GANs
- Sequence-based (SMILES) - Latent continuous chemical space - Adversarial sample generation
- Learns syntax and semantics - Enables property optimization - Encourages novelty and exploraticn
- Limited structural diversity - Reconstruction challenges - Training instability risk
GNNs / GATs

- Graph-based molecular representation
- Captures topology and connectivity
- Higher computational cost

Figure 1. Overview of deep generative architectures for molecular design
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Strengths and Limitations of Generative Models

Generative models collectively provide a paradigm shift in drug discovery by automating scaffold innovation,
accelerating chemical exploration, and supporting multi-property optimization (see Table 1). RNNs are simple
and efficient but constrained by SMILES syntax. VAEs enable smooth latent-space optimization but struggle
with reconstruction fidelity. GANs encourage diversity and novelty but suffer from instability and mode
collapse. GNNs and GATs provide chemically faithful graph-based generation but demand high computational
resources and complex training strategies. In practice, these strengths and limitations suggest that no single
generative model is universally optimal. Instead, hybrid frameworks, combining sequence-based, probabilistic,
adversarial, and graph-based strategies, are increasingly recognized as essential for robust de novo molecular

design (Brown et al., 2019; Zhavoronkov et al., 2019).

Table 1. Comparative overview of generative models

Generative RNNs (LSTM/GR)  VAEs GANs GNN-based
Model Models
Key References Gupta et al. (2018); Kingma & Welling  Goodfellow et al. Gilmer et al. (2017);

Representation

Strengths

Limitations

Implementations

Olivecrona et al.
(2017)

Sequential SMILES

Simple; RL-friendly

Sensitive to SMILES
syntax; limited space
coverage
REINVENT;
DeepChem modules

(2014); Goémez-
Bombarelli et al.
(2018)

Latent space
(SMILES/graphs)
Smooth latent
space; interpolation

Invalid molecules;
limited diversity

ChemicalVAE;
MolecularRNN-
VAE

(2014); Guimaraes
et al. (2017)

SMILES or latent
embeddings
Models complex
distributions;
reinforcement
integration
Training instability;
mode collapse

ORGAN;
MoleculeGAN;
druGAN

Jin et al. (2018)

Graphs (atoms &
bonds)

Captures chemical
validity; strong for
property prediction

Computationally
expensive

JT-VAE,
GraphVAE;
MolGAN; GCPN

Evolutionary Optimization in Drug Discovery

Evolutionary optimization encompasses a family of population-based metaheuristic methods inspired by natural
evolution (mutation, recombination, selection) (Deb et al., 2002a). In molecular design, these methods are used
both as standalone search engines and as complementing modules to deep generative models, enabling explicit
optimization of multiple competing objectives (e.g., potency, selectivity, ADMET, synthetic accessibility) while
preserving structural diversity and interpretability (Schneider, 2018; Zhong et al., 2019). Recent advances have
integrated graph-based representations, fragment-level operators, and efficient multi-objective schemes to make
evolutionary approaches increasingly practical for de novo drug design (Polishchuk et al., 2013; Nigam et al.,
2022; Deb et al., 2002b).

Principles of Genetic Algorithms

Genetic algorithms (GAs) are among the most widely applied evolutionary methods in computational chemistry.
A typical GA for molecular design maintains a population of candidate molecules that are iteratively evolved
using operators that mimic biological evolution: selection (based on a fitness function), crossover
(recombination of parental substructures), and mutation (random local changes) (Mitchell, 1998; Holland,
1992). The fitness function can be single-objective (e.g., predicted binding affinity) or compositional (weighted
combination of multiple properties). Key algorithmic choices include representation (SMILES, graph, fragment-
based encoding), the encoding of genotype-to-phenotype mappings, population sizing, and selection pressure
(Schneider, 2018). Representations that embed chemical knowledge (e.g., fragment- or graph-based encodings)
reduce the generation of chemically invalid offspring and speed convergence (Polishchuk et al., 2013). Practical
GA pipelines often use surrogate predictors (ML models) to evaluate fitness cheaply, interleaving costly
physics-based or experimental evaluations only for top candidates (Jin et al., 2020; Zhou et al., 2019).

Genetic algorithms encode molecules as chromosomes, commonly represented by SMILES strings, graphs, or
molecular fingerprints, and evolve them toward improved fitness. Each candidate solution x;€X is evaluated
through a fitness function:
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FOo)=Y =1 x(wi X filx:))

where fi(x;) represents the k-th molecular property (e.g., binding affinity, solubility, toxicity), and wx denotes the
weight assigned to this objective (Nigam et al., 2021). Selection, crossover, and mutation operators are applied
iteratively until convergence. This makes GAs particularly suitable for navigating discontinuous, high-
dimensional, and multi-modal chemical spaces (Brown et al., 2019).

To better illustrate the operational cycle of genetic algorithms in molecular design, Figure 2 presents a
schematic workflow highlighting the main evolutionary steps. Starting from an initial population of candidate
molecules encoded as SMILES strings or graph-based representations, the algorithm iteratively applies
selection, crossover, and mutation operators to generate new offspring. A fitness evaluation module, often
supported by surrogate machine learning models or physics-based simulations, guides the evolutionary search
toward improved molecular properties such as binding affinity, solubility, or synthetic accessibility (Nigam et
al., 2021; Jensen, 2019). The iterative nature of this workflow enables the progressive refinement of molecular
candidates while preserving chemical diversity and avoiding premature convergence (Zhavoronkov et al., 2019).
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Figure 2. Workflow of a genetic algorithm in de novo molecular design

Multi-objective Evolutionary Strategies

Drug discovery is inherently a multi-objective optimization problem, where candidate molecules must balance
several often conflicting criteria, such as potency, selectivity, solubility, toxicity, and synthetic accessibility.
Unlike single-objective optimization methods, multi-objective evolutionary algorithms (MOEAs) are
particularly well-suited to this task because they do not aim to find a single best solution but rather approximate
the Pareto front, a set of trade-off solutions where improving one objective would deteriorate at least one other
(Deb et al., 2002; Zhang & Li, 2007).

Formally, the optimization problem can be expressed as:

Optimize F(x)=(f1(x), f>(x),..., fx(x))

subject to chemical validity constraints (e.g., valence rules, synthetic feasibility). Here, fi(x) represents the k™
molecular property of candidate solution x, and the goal is to evolve a population of molecules such that their
fitness values collectively approximate the Pareto-optimal front (Nigam et al., 2021).
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Among MOEAs, NSGA-II (Non-dominated Sorting Genetic Algorithm II) is the most widely applied in
cheminformatics due to its simplicity, efficiency, and ability to preserve population diversity. It relies on non-
dominated sorting to classify solutions into Pareto fronts and uses a crowding distance metric to ensure spread
across the front. This makes NSGA-II particularly effective for drug design tasks such as optimizing potency
against synthetic accessibility or ADMET properties (Stahl et al., 2022).

Table 2. Comparative overview of NSGA-II and MOEA/D in Multi-Objective Molecular Design

Criterion NSGA-II MOEA/D References
Optimization Non-dominated Decomposition of  Deb et al., 2002;
paradigm sorting with multi-objective Zhang & Li, 2007

crowding-distance problem into

to rank and scalar

preserve Pareto subproblems

diversity optimized

cooperatively

Diversity Ensures diversity Maintains Deb et al., 2002;
preservation using crowding- diversity through ~ Li & Zhang, 2009

distance and elitism  neighborhood
relations in

decomposed
subproblems
Scalability Effective for 2-3 More scalable for  Ishibuchi et al.,
objectives but many-objective 2016
performance problems due to
degrades with decomposition
higher dimensions strategy
Convergence Strong convergence Competitive Zhang & Li,
for low- convergence in 2007; Ishibuchi et
dimensional high-dimensional  al., 2016

objectives, sensitive  settings; less
to parameter tuning  sensitive to

number of
objectives
Computational ~ O(MN?) per O(NT) per Deb et al., 2002;
complexity generation (M = generation (T = Zhang & Li, 2007
objectives, N = neighborhood
population size) size), often lower
computational
overhead
Applications in ~ Used for optimizing Applied to multi-  Nigam et al.,
drug discovery ~ potency vs. objective 2021; Gao et al.,
synthetic molecular 2022
accessibility; generation (e.g.,
effective in ADMET
generating diverse balance);
candidate advantageous for
molecules complex property
landscapes
Limitations May lose Requires careful Deb et al., 2002;
performance in decomposition Zhang & Li,
high-dimensional strategy; 2007; Ishibuchi et
spaces; crowding- neighborhood al., 2016
distance can bias definition affects
diversity results

Alternatively, MOEA/D (Multi-Objective Evolutionary Algorithm based on Decomposition) decomposes a
multi-objective problem into a set of scalar optimization subproblems, each optimized in parallel while sharing
information with neighboring subproblems. This decomposition approach often provides improved scalability
and convergence for high-dimensional objective spaces (Zhang & Li, 2007). Recent studies in molecular
optimization suggest that MOEA/D variants can perform comparably, or even better, than NSGA-II in specific

517



International Conference on Technology, Engineering and Science (IConTES), November 12-15, 2025, Antalya/Tiirkiye

bi-objective and tri-objective settings (Brown et al., 2019). Finally, recent adaptations of MOEAs in drug
discovery incorporate dynamic penalty strategies to account for drug-likeness and synthetic accessibility, as well
as graph-based molecular encodings to ensure the chemical validity of offspring during evolution (Zhavoronkov
et al., 2019; Stahl et al., 2022). These improvements make evolutionary multi-objective optimization a powerful
and increasingly practical tool for guiding de novo molecular design.

Although both NSGA-II and MOEA/D have demonstrated strong performance in molecular multi-objective
optimization, they rely on fundamentally different paradigms, non-dominated sorting versus decomposition.
Table 2 summarizes their comparative characteristics, offering insights into when each algorithm may be
preferable in the context of drug discovery.

Fragment-Based and Crossover Operators in Chemical Space

To ensure the generation of chemically valid offspring during evolutionary optimization, crossover and mutation
operators are frequently constrained by fragment-based recombination strategies (Brown et al., 2019). Unlike
naive string-level manipulations of SMILES that can easily produce invalid structures, fragment-based
approaches operate on chemically meaningful units, such as rings, linkers, or functional groups. For two parent
molecules x, and x,, a fragment-based crossover operator C can be formally defined as:

Xenita = C(xp, x4) = merge(frag(x,), frag(x,))

where frag(.) denotes the extraction of synthetically feasible substructures. This ensures that the recombination
process preserves valence rules, avoids bond-breaking artifacts, and yields molecules that are more likely to be
chemically stable and synthetically accessible (Polishchuk et al., 2013).

Mutation operators within this framework typically involve localized structural perturbations such as functional
group substitutions, ring contractions or expansions, and stereochemical inversions. These operations allow the
exploration of diverse regions of chemical space while maintaining molecular validity (Nigam et al., 2020).
Importantly, chemically aware operators significantly reduce the occurrence of invalid SMILES strings, a major
drawback in purely syntax-based generative approaches, and contribute to the design of molecules that are more
readily synthesizable (Yoshimori et al., 2021; Segler et al., 2018).

In this way, fragment-based crossover and chemically guided mutation form a core component of evolutionary
molecular design pipelines, balancing the trade-off between exploration of novel chemical scaffolds and
exploitation of synthetically tractable structures.

GA Implementations in Drug Discovery

The application of genetic algorithms (GAs) in drug discovery has evolved significantly, moving from early
SMILES-based encodings to sophisticated graph and latent space representations. Several notable
implementations illustrate this progression, each addressing specific challenges in de novo molecular design.
MolEvol represents one of the earliest GA-based molecular design frameworks, relying on SMILES string
encodings to explore chemical space (Brown et al., 2019). Its optimization objectives included binding affinity
and drug-likeness quantified by the Quantitative Estimate of Drug-likeness (QED), while operators such as
fragment-based crossover and mutations were employed to preserve chemical validity. Despite its simplicity,
MolEvol demonstrated the feasibility of evolutionary search in chemical space.

In contrast, JANUS introduced a graph-based encoding scheme that enabled a more chemically intuitive
representation of molecules (Nigam et al., 2021). By incorporating adaptive crossover and mutation strategies,
JANUS efficiently balanced multiple objectives such as potency, solubility, and toxicity. This multi-objective
optimization framework addressed the inherent trade-offs in drug design, showcasing the power of GAs in
multi-criteria decision-making.

MolGA further refined graph-based representations by implementing graph crossover and edge mutation
operators tailored to molecular structures (Zhou et al., 2019). This design ensured that generated molecules
adhered to chemical validity constraints while maintaining high diversity. MolGA’s emphasis on
synthesizability and drug-likeness marked an important step toward practical drug discovery applications.
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The integration of genetic algorithms with deep generative models is exemplified by DEFactor, which leveraged
latent space embeddings as an encoding scheme (Assouel et al., 2018). In this approach, crossover operations
were performed in the learned latent space, enabling smooth exploration of molecular manifolds. This
hybridization of GAs with deep learning allowed optimization based on docking scores and QED, bridging
symbolic evolutionary search with representation learning.

Finally, Hybrid GA-ML approaches combined graph embeddings with machine learning predictors to optimize
pharmacokinetic and toxicological endpoints (Stahl et al., 2022). By reinforcing crossover and guiding
mutations with predictive models, these methods reduced the computational cost associated with expensive
molecular evaluations such as docking or quantum chemistry. Such hybrid frameworks exemplify the shift
toward efficiency-driven GA implementations in modern drug discovery pipelines.

Overall, these implementations highlight the adaptability of genetic algorithms to various molecular
representations and optimization objectives. From string-based encodings to latent space manipulations, GAs
continue to provide a versatile search paradigm for balancing the competing objectives of potency, safety, and
synthesizability in drug discovery.

Limitations and Challenges

Although evolutionary methods bring transparency and multi-objective capability, they face several challenges
in practice:

e Computational Cost: Populations and many generations require large numbers of fitness evaluations;
expensive physics-based or experimental scoring limits throughput. Surrogate models and active
sampling have been proposed to mitigate this cost, but they introduce model-bias risks (Nigam et al.,
2020; Stahl et al., 2022).

e Validity vs. Novelty Trade-off: Aggressive mutation and crossover increase novelty but often yield
chemically invalid or synthetically infeasible molecules. Balancing exploration and exploitation is
therefore nontrivial. Fragment-aware encodings and chemically valid operators help reduce invalid
candidates but do not eliminate the problem entirely (Brown et al., 2019; Yoshimori et al., 2021).

e Objective Modeling Errors: Machine learning surrogates can misrank candidates, and noisy
predictors may drive premature convergence toward artifacts. Robust uncertainty quantification and
multi-fidelity evaluation pipelines are recommended (Vamathevan et al., 2019; Schneider et al., 2020).

e Scalability to Many Objectives: Many-objective optimization (>4-5 objectives) complicates Pareto
selection and diversity maintenance. Specialized algorithms such as NSGA-II or decomposition-based
methods like MOEA/D have been adapted to molecular discovery to address this issue (Deb et al.,
2002; Zhang & Li, 2007; Ishibuchi et al., 2016).

o Integration with Wet-Lab Workflows: Translating evolutionary outputs into synthesizable, testable
molecules requires retrosynthetic planning, procurement considerations, and assay translation areas
where further automation and standardization are needed (Segler et al., 2018; Zhavoronkov et al.,
2019).

Overall, evolutionary optimization remains a powerful and interpretable approach for multi-objective molecular
design, particularly when combined with modern graph representations, fragment-aware operators, and
surrogate models. The trend in recent literature is toward hybrid pipelines that combine the generative power of
deep models with the explicit search and control offered by evolutionary algorithms, yielding pragmatic systems
capable of producing chemically plausible, multi-objective-optimized candidates at scale (Gomez-Bombarelli et
al., 2018; Nigam et al., 2021).

Synergizing Generative Models with Evolutionary Algorithms
Complementary Strengths of the Two Paradigms

Generative models and evolutionary algorithms (EAs) offer distinct yet complementary advantages for
molecular design (refer to Table 3). Generative models, such as variational autoencoders (Kingma & Welling,
2014; Gomez-Bombarelli et al., 2018), generative adversarial networks (Goodfellow et al., 2014; Kadurin et al.,
2017; Guimaraes et al., 2017), and reinforcement learning—based graph models (Olivecrona et al., 2017; You et
al., 2018; Shi et al., 2020), excel at capturing the complex distribution of chemical space and generating novel
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structures. However, these models may suffer from biases introduced by training data and may not directly
optimize multiple drug-relevant objectives (Schneider, 2018; Zhong et al., 2019).

In contrast, evolutionary algorithms, particularly multi-objective methods such as NSGA-II (Deb et al., 2002)
and MOEA/D (Zhang & Li, 2007), are inherently suited for balancing competing objectives like potency,
solubility, and toxicity (Nigam et al., 2021). EAs provide explicit control over diversity maintenance and can
incorporate chemically valid crossover and mutation operators (Yoshimori et al., 2021). By combining these
paradigms, generative models can propose diverse and syntactically valid candidates, while EAs refine and
optimize them in accordance with medicinal chemistry constraints. Table 3 highlights the complementarity of
generative models and genetic algorithms:

Table 3: Comparative analysis of deep generative models vs. evolutionary algorithms in molecular design

Criterion Deep Generative Evolutionary Benchmark
Models Algorithms References
70-99% 0 Krenn et al.

Validity (SELFIES: iggsf’r S;i‘f)me“t (2020); Segler et
>99.9%) al. (2018)

C Gao & Coley
iy;‘ctgre:‘jf)”hty S 15-40% 75-92% (2020); Nigam et
= al. (2019)

Novelty (Tanimoto Brown ct al.
<04y Y 80-95% 45-70% (2019); You et al.
' (2018)
Multi-Objective  Limited by Native = Lictal (2018),
Support reward design integration via Steinmann &
fitness Jensen (2021)
Hybrid framework

Hybrid frameworks aim to leverage the expressive generation capabilities of deep models with the robust search
and optimization of evolutionary algorithms. One common strategy is to embed molecules in continuous latent
spaces learned by autoencoders or graph neural networks (Blaschke et al., 2020; Winter et al., 2019), where
genetic operators such as crossover and mutation can be applied more smoothly (Assouel et al., 2018). Another
approach integrates reinforcement learning—based generative models with EA-driven population management,
ensuring balance between exploration and exploitation (Nigam et al., 2020; Stahl et al., 2022).

Such frameworks allow iterative interplay: generative models explore wide areas of chemical space, while
evolutionary operators guide optimization toward Pareto-optimal sets with respect to pharmacokinetics, toxicity,
and synthetic accessibility (Ishibuchi et al., 2016; Schneider et al., 2020). This synergy directly addresses the
limitations of purely generative approaches, particularly in multi-objective settings where trade-offs are
unavoidable.

Case Studies and Benchmarks

Several implementations exemplify the synergy between generative and evolutionary paradigms (refer to Figure
3) . The JANUS framework employs a parallel-tempered genetic algorithm guided by neural networks, enabling
efficient multi-objective optimization of drug-like molecules (Nigam et al., 2021; Nigam et al., 2022).
STONED, based on the SELFIES molecular representation, achieves rapid traversal and exploration of chemical
space, demonstrating the effectiveness of EA-guided search without the need for large-scale training (Nigam,
Pollice et al., 2022).

Benchmarking platforms such as GuacaMol (Brown et al., 2019) and comparative studies (Polishchuk et al.,
2013) provide standardized metrics for evaluating generative-EA hybrids across objectives like quantitative
estimate of drug-likeness (QED), binding affinity, and synthesizability. These studies confirm that hybrid
methods often outperform standalone generative models or purely evolutionary searches in terms of chemical
validity, novelty, and multi-objective performance. Figure 2 illustrates a typical workflow for hybrid
generative—evolutionary drug design begins with a generative model trained on large chemical datasets (Gomez-
Bombarelli et al., 2018; Gilmer et al., 2017). Candidate molecules generated in SMILES or graph form are
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passed to an evolutionary optimization layer, where crossover, mutation, and selection are applied under multi-
objective constraints (Deb et al., 2002; Li & Zhang, 2009). Feedback from predictive models (Vamathevan et
al., 2019; Zhavoronkov et al., 2019) or docking simulations (Zhou et al., 2019) is used to update both the
evolutionary fitness functions and the generative model parameters. Figure 3 illustrates the synergy between
generative models and evolutionary systems for multi-objective molecular design:

Generative Candidate
Model Molecules
e

N\

Optimized

Evolutionary
Feedback Molecules

Optimization

Predictive Models

Chemical Spacej

Figure 3. Workflow of hybrid generative—evolutionary frameworks for multi-objective molecular design

Future Directions

The convergence of generative modeling and evolutionary optimization is still at an early stage, and several
avenues remain open for advancing the field.

Dynamic Multi-Objective Penalties

Traditional multi-objective optimization often treats all objectives with static weights or Pareto dominance.
However, drug discovery objectives such as potency, selectivity, and pharmacokinetic properties, rarely remain
fixed throughout a project’s lifecycle. Dynamic penalty schemes, in which weights adapt based on progress or
project stage, could enable more pragmatic optimization. Such adaptive formulations would allow algorithms to
progressively shift emphasis from chemical diversity toward synthesis feasibility and clinical relevance (Deb et
al., 2002; Li & Zhang, 2009).

Integration with Reinforcement Learning

While evolutionary algorithms excel in population-based exploration, reinforcement learning (RL) methods
provide fine-grained control over sequential molecular construction (Olivecrona et al., 2017; Zhou et al., 2019).
Combining these paradigms could yield synergistic frameworks where RL policies guide local exploration,
while evolutionary operators maintain population-level diversity and multi-objective balance. Such
hybridization is especially promising for tasks requiring long-horizon credit assignment, such as scaffold
hopping or synthesizability-aware optimization.

Towards Fully Automated, Closed-Loop Drug Discovery Pipelines

The ultimate goal of this research trajectory is to achieve autonomous design—make—test—analyze (DMTA)
cycles (Schneider, 2018; Segler et al., 2018). Closing the loop between in silico design, robotic synthesis, and
high-throughput screening will require robust interfacing of generative—evolutionary models with retrosynthetic
planning engines (Segler et al., 2018) and laboratory automation platforms. Active learning and uncertainty-
aware surrogate models (Vamathevan et al., 2019) will be critical for prioritizing experiments and reducing
costs in these pipelines. Progress in this direction could enable self-driving laboratories that iteratively refine
molecular candidates with minimal human intervention, accelerating the path from hypothesis to validated lead.
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Our Contributions to AI-Driven Drug Discovery

Over the three past years, our research group has made several contributions to the rapidly evolving field of Al-
driven drug discovery. Building on the synergy between deep generative models and evolutionary optimization,
we have focused on developing deep generative and hybrid frameworks that combine data-driven molecular
generation with multi-objective search strategies. These efforts aim to accelerate de novo molecular design,
improve chemical validity, and enhance the interpretability of Al-assisted drug development.

Our first contribution Oulladji et al., 2025, explores the use of artificial intelligence and machine learning
techniques in the drug discovery process, focusing on how data-driven models can accelerate target
identification, molecular design, and compound optimization. The study highlights the importance of predictive
modeling, deep learning, and virtual screening in reducing cost and time in drug development. Finally, it
emphasizes future directions toward automated and intelligent drug design pipelines. Second research, Taieb
Brahim et al., currently under peer review, proposes a hybrid framework that integrates a Variational
Autoencoder (VAE) to generate diverse anticancer molecular structures and a multi-objective Genetic
Algorithm to optimize them. The optimization process simultaneously targets predicted anticancer activity
(GCN), drug-likeness (QED), synthetic accessibility (SA), and Lipinski compliance. Overall, the proposed
approach efficiently explores chemical space and identifies promising, realistic, and synthesizable drug
candidates.

Finally, our current contribution, Abbad et al., investigates the integration of deep generative models with a dual
optimization strategy leveraging Genetic Algorithms (GA) and the Colibri algorithm. The generative model
provides diverse initial molecular candidates, while the GA—Colibri optimization jointly refines them with
respect to predicted bioactivity, drug-likeness, synthetic accessibility, and pharmacokinetic constraints. The
designed approach accelerates de novo molecule discovery while maintaining a balance between potency,
feasibility, and developability. Together, these contributions illustrate our commitment to advancing the
intersection of artificial intelligence, cheminformatics, and computational drug design, paving the way toward
more efficient, interpretable, and autonomous discovery workflows.

Conclusion

The integration of generative models with evolutionary algorithms is reshaping molecular design by uniting
data-driven creativity with interpretable, multi-objective optimization. Emerging hybrid frameworks not only
enhance chemical validity and synthesizability but also pave the way toward autonomous, closed-loop discovery
pipelines. As adaptive optimization strategies and reinforcement learning integration mature, these approaches
hold the potential to accelerate drug discovery dramatically, bridging the gap between theoretical innovation and
tangible therapeutic breakthroughs. Ultimately, hybrid generative—evolutionary frameworks may enable the
transition from exploratory molecular design to truly autonomous drug discovery.
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