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Abstract: Artificial intelligence (AI) is reshaping drug discovery by enabling efficient and precise 

identification of novel therapeutics. This review examines the synergistic use of deep generative models, such as 

Long Short-Term Memory (LSTM) networks, Variational Autoencoders (VAEs), and Graph Attention 

Networks (GATs), together with evolutionary optimization techniques, including genetic algorithms and multi-

objective evolutionary strategies. While deep learning architectures excel at capturing complex molecular 

representations and generating chemically valid compounds, evolutionary algorithms provide complementary 

strengths in global exploration and multi-objective trade-off optimization. The combination of these two 

paradigms offers a powerful and complementary toolkit: deep learning provides the capacity to learn rich 

chemical features and propose innovative scaffolds, whereas evolutionary methods ensure efficient navigation 

of chemical space and balanced optimization across multiple drug-like criteria. Through comparative analyses, 

quantitative benchmarks, and illustrative figures, we highlight how integrating generative and evolutionary 

paradigms can accelerate de novo molecular design, reduce development timelines, and lower costs. We also 

address technical and ethical challenges. In particular, our ongoing research explores hybrid frameworks that 

combine variational autoencoders, graph neural predictors, Colibri algorithm and Genetic algorithms with 

fragment-based crossover, and dynamic multi-objective penalties to further enhance chemical validity, 

pharmacological relevance, and synthetic accessibility. Future efforts aim to demonstrate that such hybrid 

frameworks can bridge the gap between theoretical innovation and practical drug development, bringing AI-

driven discovery closer to real-world therapeutic breakthroughs. 

 

Keywords: Drug discovery, Molecule design, Deep generative models, Evolutionary algorithms, Multi-

objective optimization. 

 

 

Introduction 

 

Drug discovery is a cornerstone of biomedical innovation but remains an extremely costly and time-consuming 

endeavor, often requiring over a decade and billions of dollars to bring a single drug to market (DiMasi, 

Grabowski, & Hansen, 2016). Despite advances in computational chemistry and high-throughput screening, 

attrition rates in clinical trials remain high due to issues of efficacy, toxicity, and poor pharmacokinetics (Paul et 

al., 2010). These challenges underscore the urgent need for more efficient strategies capable of exploring the 
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vast chemical space, estimated to contain up to 1060 drug-like molecules, while simultaneously optimizing 

multiple therapeutic objectives (Polishchuk, Madzhidov, & Varnek, 2013). 

 

Conventional in silico approaches, such as docking and quantitative structure–activity relationship (QSAR) 

models, provide valuable predictive tools but often suffer from limited generalizability, high dependence on 

prior knowledge, and poor scalability when faced with unprecedented chemical scaffolds (Schneider et al., 

2020). Similarly, in vitro assays, although indispensable for experimental validation, are labor-intensive, 

expensive, and inherently sequential, restricting their ability to explore chemical diversity at scale (Vamathevan 

et al., 2019). The fragmentation between computational predictions and experimental testing continues to delay 

the discovery of effective therapeutics, highlighting the need for integrated frameworks that are both exploratory 

and optimization-oriented. 

 

Recent progress in artificial intelligence (AI) has introduced generative models, such as variational autoencoders 

(VAEs), generative adversarial networks (GANs), and graph neural networks (GNNs), which can learn complex 

molecular distributions and design novel compounds with promising drug-like properties (Zhavoronkov et al., 

2019; Blaschke et al., 2020). These models excel in capturing latent chemical features and generating 

structurally valid molecules, but often struggle with balancing multiple objectives, such as potency, selectivity, 

and synthetic accessibility. Evolutionary algorithms (EAs), by contrast, are particularly effective at global 

exploration and multi-objective optimization, using mechanisms like mutation, crossover, and selection to 

iteratively refine candidate solutions (Brown et al., 2019). Integrating deep generative models with EAs offers a 

synergistic paradigm: the former drives innovation by proposing diverse molecular scaffolds, while the latter 

ensures efficient navigation of chemical space and optimization across competing therapeutic criteria (Nigam et 

al., 2022). This hybridization promises not only to accelerate de novo molecular design but also to reduce 

attrition rates and shorten development timelines, ultimately transforming AI-driven drug discovery. 

 

The remainder of this paper is organized as follows. Section 2 provides an overview of deep generative models 

for molecular design, including recurrent neural networks, variational auto-encoders, generative adversarial 

networks, and graph-based models, highlighting their respective strengths and limitations. Section 3 discusses 

evolutionary optimization methods, with an emphasis on genetic algorithms, multi-objective strategies, and 

chemically valid genetic operators tailored to drug discovery. Section 4 explores the synergy between generative 

models and evolutionary algorithms, presenting hybrid frameworks, case studies, and benchmark comparisons, 

as well as illustrative workflows. Section 5 outlines future research directions, focusing on dynamic multi-

objective penalties, integration with reinforcement learning, and the development of fully automated, closed-

loop drug discovery pipelines. In addition, Section 6 highlights our contributions to AI-Driven drug discovery 

with novel methodological innovations. Finally, Section 7 concludes the paper with a synthesis of key insights 

and perspectives on the role of hybrid generative–evolutionary paradigms in accelerating AI-driven molecular 

design. 

 

 

Deep Generative Models for Molecular Design 
 

The emergence of deep generative models has profoundly transformed de novo molecular design, enabling the 

automated generation of structurally valid and pharmacologically relevant compounds (Table. 1). By learning 

latent representations of chemical space, these models provide scalable frameworks to design molecules with 

desired physicochemical, biological, and pharmacokinetic properties. The following subsections review the 

most prominent generative architectures employed in molecular design. 
 

 

Recurrent Neural Networks (RNNs, LSTM, GRU) 

 

Recurrent neural networks (RNNs) and their gated variants: Long Short-Term Memory (LSTM) and Gated 

Recurrent Units (GRU), have been widely adopted for sequence-based molecular generation, typically using 

SMILES (Simplified Molecular Input Line Entry System) representations (Olivecrona et al., 2017). These 

models leverage sequential dependencies to learn syntax and semantics of chemical strings, ensuring the 

generation of syntactically valid SMILES. LSTMs are particularly effective at capturing long-range 

dependencies, reducing the risk of invalid outputs, while GRUs provide computational efficiency without 

significantly compromising accuracy (Gupta et al., 2018). However, SMILES-based models remain sensitive to 

syntax errors, and their reliance on a single linear representation of molecules can limit structural diversity. 
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Variational Autoencoders (VAEs) 

 

Variational autoencoders (VAEs) introduced probabilistic latent representations into molecular design, enabling 

interpolation and continuous optimization in chemical space (Kingma & Welling, 2014). In this framework, 

molecules are encoded into a latent vector space and decoded back into valid molecular structures, which 

facilitates property-driven optimization via gradient-based methods (Gómez-Bombarelli et al., 2018). VAEs can 

also incorporate chemical constraints and multi-objective loss functions to balance validity, novelty, and 

synthetic accessibility (Jin et al., 2018). Nevertheless, VAEs often suffer from posterior collapse and low 

reconstruction fidelity, particularly for complex molecular graphs, which has motivated hybridization with 

graph neural networks and reinforcement learning strategies (Winter et al., 2019). 

 

 

Generative Adversarial Networks (GANs) 

 

Generative adversarial networks (GANs) employ a competitive setup between a generator, which proposes 

candidate molecules, and a discriminator, which distinguishes between real and generated samples (Goodfellow 

et al., 2014). In molecular design, GANs have demonstrated strong potential for producing chemically diverse 

scaffolds while aligning outputs with drug-like distributions (Kadurin et al., 2017). Advanced implementations, 

such as ORGAN (Objective-Reinforced GAN), integrate reinforcement learning to steer generation toward 

molecules with optimized bioactivity (Guimaraes et al., 2017). Despite their promise, GANs remain difficult to 

train due to instability, mode collapse, and the challenge of ensuring strict chemical validity. 

 

 

Graph Neural Networks (GNNs, GATs) 

 

Graph neural networks (GNNs) represent molecules as graphs, where atoms correspond to nodes and bonds to 

edges, allowing direct learning from molecular topology (Gilmer et al., 2017). Variants such as Graph 

Convolutional Networks (GCNs) and Graph Attention Networks (GATs) enhance molecular representation by 

capturing both local and global structural dependencies (Velickovic et al., 2018). Recent advances in graph-

based generative models, such as GraphVAE and GraphAF, enable the direct generation of molecular graphs, 

bypassing SMILES limitations (You et al., 2018; Shi et al., 2020). These models demonstrate superior 

performance in terms of validity, novelty, and scaffold diversity. However, challenges remain in balancing 

efficiency with expressiveness, as graph-based generation is computationally intensive and requires 

sophisticated decoding strategies. 

 

Figure 1 summarizes the major classes of deep generative models applied in de novo molecular design. Each 

architecture provides a distinct strategy for navigating chemical space and balancing structural validity, novelty, 

and property optimization. 

 

 
Figure 1. Overview of deep generative architectures for molecular design 
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Strengths and Limitations of Generative Models 

 

Generative models collectively provide a paradigm shift in drug discovery by automating scaffold innovation, 

accelerating chemical exploration, and supporting multi-property optimization (see Table 1). RNNs are simple 

and efficient but constrained by SMILES syntax. VAEs enable smooth latent-space optimization but struggle 

with reconstruction fidelity. GANs encourage diversity and novelty but suffer from instability and mode 

collapse. GNNs and GATs provide chemically faithful graph-based generation but demand high computational 

resources and complex training strategies. In practice, these strengths and limitations suggest that no single 

generative model is universally optimal. Instead, hybrid frameworks, combining sequence-based, probabilistic, 

adversarial, and graph-based strategies, are increasingly recognized as essential for robust de novo molecular 

design (Brown et al., 2019; Zhavoronkov et al., 2019). 

 

Table 1. Comparative overview of generative models  

     

 

Evolutionary Optimization in Drug Discovery 
 

Evolutionary optimization encompasses a family of population-based metaheuristic methods inspired by natural 

evolution (mutation, recombination, selection) (Deb et al., 2002a). In molecular design, these methods are used 

both as standalone search engines and as complementing modules to deep generative models, enabling explicit 

optimization of multiple competing objectives (e.g., potency, selectivity, ADMET, synthetic accessibility) while 

preserving structural diversity and interpretability (Schneider, 2018; Zhong et al., 2019). Recent advances have 

integrated graph-based representations, fragment-level operators, and efficient multi-objective schemes to make 

evolutionary approaches increasingly practical for de novo drug design (Polishchuk et al., 2013; Nigam et al., 

2022; Deb et al., 2002b). 

 

 

Principles of Genetic Algorithms 

 

Genetic algorithms (GAs) are among the most widely applied evolutionary methods in computational chemistry. 

A typical GA for molecular design maintains a population of candidate molecules that are iteratively evolved 

using operators that mimic biological evolution: selection (based on a fitness function), crossover 

(recombination of parental substructures), and mutation (random local changes) (Mitchell, 1998; Holland, 

1992). The fitness function can be single-objective (e.g., predicted binding affinity) or compositional (weighted 

combination of multiple properties). Key algorithmic choices include representation (SMILES, graph, fragment-

based encoding), the encoding of genotype-to-phenotype mappings, population sizing, and selection pressure 

(Schneider, 2018). Representations that embed chemical knowledge (e.g., fragment- or graph-based encodings) 

reduce the generation of chemically invalid offspring and speed convergence (Polishchuk et al., 2013). Practical 

GA pipelines often use surrogate predictors (ML models) to evaluate fitness cheaply, interleaving costly 

physics-based or experimental evaluations only for top candidates (Jin et al., 2020; Zhou et al., 2019). 

Genetic algorithms encode molecules as chromosomes, commonly represented by SMILES strings, graphs, or 

molecular fingerprints, and evolve them toward improved fitness. Each candidate solution xi∈X is evaluated 

through a fitness function: 

Generative 

Model 

RNNs (LSTM/GR) VAEs GANs GNN-based 

Models 
Key References Gupta et al. (2018); 

Olivecrona et al. 

(2017) 

Kingma & Welling 

(2014); Gómez-

Bombarelli et al. 

(2018) 

Goodfellow et al. 

(2014); Guimaraes 

et al. (2017) 

Gilmer et al. (2017); 

Jin et al. (2018) 

Representation Sequential SMILES Latent space 

(SMILES/graphs) 
SMILES or latent 

embeddings 
Graphs (atoms & 

bonds) 
Strengths Simple; RL-friendly Smooth latent 

space; interpolation 
Models complex 

distributions; 

reinforcement 

integration 

Captures chemical 

validity; strong for 

property prediction 

Limitations Sensitive to SMILES 

syntax; limited space 

coverage 

Invalid molecules; 

limited diversity 
Training instability; 

mode collapse 
Computationally 

expensive 

Implementations REINVENT; 

DeepChem modules 
ChemicalVAE; 

MolecularRNN-

VAE 

ORGAN; 

MoleculeGAN; 

druGAN 

JT-VAE; 

GraphVAE; 

MolGAN; GCPN 
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F(xi)=∑i=1..K(wk×fk(xi)) 

 

where fk(xi) represents the k-th molecular property (e.g., binding affinity, solubility, toxicity), and wk denotes the 

weight assigned to this objective (Nigam et al., 2021). Selection, crossover, and mutation operators are applied 

iteratively until convergence. This makes GAs particularly suitable for navigating discontinuous, high-

dimensional, and multi-modal chemical spaces (Brown et al., 2019). 

 

To better illustrate the operational cycle of genetic algorithms in molecular design, Figure 2 presents a 

schematic workflow highlighting the main evolutionary steps. Starting from an initial population of candidate 

molecules encoded as SMILES strings or graph-based representations, the algorithm iteratively applies 

selection, crossover, and mutation operators to generate new offspring. A fitness evaluation module, often 

supported by surrogate machine learning models or physics-based simulations, guides the evolutionary search 

toward improved molecular properties such as binding affinity, solubility, or synthetic accessibility (Nigam et  

al., 2021; Jensen, 2019). The iterative nature of this workflow enables the progressive refinement of molecular 

candidates while preserving chemical diversity and avoiding premature convergence (Zhavoronkov et al., 2019). 

 

 
Figure 2. Workflow of a genetic algorithm in de novo molecular design 

 

 

Multi-objective Evolutionary Strategies 

 

Drug discovery is inherently a multi-objective optimization problem, where candidate molecules must balance 

several often conflicting criteria, such as potency, selectivity, solubility, toxicity, and synthetic accessibility. 

Unlike single-objective optimization methods, multi-objective evolutionary algorithms (MOEAs) are 

particularly well-suited to this task because they do not aim to find a single best solution but rather approximate 

the Pareto front, a set of trade-off solutions where improving one objective would deteriorate at least one other 

(Deb et al., 2002; Zhang & Li, 2007). 

 

Formally, the optimization problem can be expressed as:  

 

Optimize F(x)=(f1(x), f2(x),…, fK(x)) 

 

subject to chemical validity constraints (e.g., valence rules, synthetic feasibility). Here, fk(x) represents the kth 

molecular property of candidate solution x, and the goal is to evolve a population of molecules such that their 

fitness values collectively approximate the Pareto-optimal front (Nigam et al., 2021). 
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Among MOEAs, NSGA-II (Non-dominated Sorting Genetic Algorithm II) is the most widely applied in 

cheminformatics due to its simplicity, efficiency, and ability to preserve population diversity. It relies on  non-

dominated sorting to classify solutions into Pareto fronts and uses a crowding distance metric  to ensure spread 

across the front. This makes NSGA-II particularly effective for drug design tasks such as optimizing potency 

against synthetic accessibility or ADMET properties (Stahl et al., 2022). 

 

Table 2. Comparative overview of NSGA-II and MOEA/D in Multi-Objective Molecular Design  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alternatively, MOEA/D (Multi-Objective Evolutionary Algorithm based on Decomposition) decomposes a 

multi-objective problem into a set of scalar optimization subproblems, each optimized in parallel while sharing 

information with neighboring subproblems. This decomposition approach often provides improved scalability 

and convergence for high-dimensional objective spaces (Zhang & Li, 2007). Recent studies in molecular 

optimization suggest that MOEA/D variants can perform comparably, or even better, than NSGA-II in specific 

Criterion NSGA-II MOEA/D References 

Optimization 

paradigm 

Non-dominated 

sorting with 

crowding-distance 

to rank and 

preserve Pareto 

diversity 

Decomposition of 

multi-objective 

problem into 

scalar 

subproblems 

optimized 

cooperatively 

Deb et al., 2002; 

Zhang & Li, 2007 

Diversity 

preservation 

Ensures diversity 

using crowding-

distance and elitism 

Maintains 

diversity through 

neighborhood 

relations in 

decomposed 

subproblems 

Deb et al., 2002; 

Li & Zhang, 2009 

Scalability Effective for 2–3 

objectives but 

performance 

degrades with 

higher dimensions 

More scalable for 

many-objective 

problems due to 

decomposition 

strategy 

Ishibuchi et al., 

2016 

Convergence Strong convergence 

for low-

dimensional 

objectives, sensitive 

to parameter tuning 

Competitive 

convergence in 

high-dimensional 

settings; less 

sensitive to 

number of 

objectives 

Zhang & Li, 

2007; Ishibuchi et 

al., 2016 

Computational 

complexity 

O(MN²) per 

generation (M = 

objectives, N = 

population size) 

O(NT) per 

generation (T = 

neighborhood 

size), often lower 

computational 

overhead 

Deb et al., 2002; 

Zhang & Li, 2007 

Applications in 

drug discovery 

Used for optimizing 

potency vs. 

synthetic 

accessibility; 

effective in 

generating diverse 

candidate 

molecules 

Applied to multi-

objective 

molecular 

generation (e.g., 

ADMET 

balance); 

advantageous for 

complex property 

landscapes 

Nigam et al., 

2021; Gao et al., 

2022 

Limitations May lose 

performance in 

high-dimensional 

spaces; crowding-

distance can bias 

diversity 

Requires careful 

decomposition 

strategy; 

neighborhood 

definition affects 

results 

Deb et al., 2002; 

Zhang & Li, 

2007; Ishibuchi et 

al., 2016 
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bi-objective and tri-objective settings (Brown et al., 2019). Finally, recent adaptations of MOEAs in drug 

discovery incorporate dynamic penalty strategies to account for drug-likeness and synthetic accessibility, as well 

as graph-based molecular encodings to ensure the chemical validity of offspring during evolution (Zhavoronkov 

et al., 2019; Stahl et al., 2022). These improvements make evolutionary multi-objective optimization a powerful 

and increasingly practical tool for guiding de novo molecular design. 

 

Although both NSGA-II and MOEA/D have demonstrated strong performance in molecular multi-objective 

optimization, they rely on fundamentally different paradigms, non-dominated sorting versus decomposition. 

Table 2 summarizes their comparative characteristics, offering insights into when each algorithm may be 

preferable in the context of drug discovery. 

 

 

Fragment-Based and Crossover Operators in Chemical Space 

 

To ensure the generation of chemically valid offspring during evolutionary optimization, crossover and mutation 

operators are frequently constrained by fragment-based recombination strategies (Brown et al., 2019). Unlike 

naive string-level manipulations of SMILES that can easily produce invalid structures, fragment-based 

approaches operate on chemically meaningful units, such as rings, linkers, or functional groups. For two parent 

molecules xp and xq, a fragment-based crossover operator C can be formally defined as: 

 

xchild = C(xp, xq) = merge(frag(xp), frag(xq)) 

 

where frag(.) denotes the extraction of synthetically feasible substructures. This ensures that the recombination 

process preserves valence rules, avoids bond-breaking artifacts, and yields molecules that are more likely to be 

chemically stable and synthetically accessible (Polishchuk et al., 2013). 

 

Mutation operators within this framework typically involve localized structural perturbations such as functional 

group substitutions, ring contractions or expansions, and stereochemical inversions. These operations allow the 

exploration of diverse regions of chemical space while maintaining molecular validity (Nigam et al., 2020). 

Importantly, chemically aware operators significantly reduce the occurrence of invalid SMILES strings, a major 

drawback in purely syntax-based generative approaches, and contribute to the design of molecules that are more 

readily synthesizable (Yoshimori et al., 2021; Segler et al., 2018). 

 

In this way, fragment-based crossover and chemically guided mutation form a core component of evolutionary 

molecular design pipelines, balancing the trade-off between exploration of novel chemical scaffolds and 

exploitation of synthetically tractable structures. 

 

 

GA Implementations in Drug Discovery 

 

The application of genetic algorithms (GAs) in drug discovery has evolved significantly, moving from early 

SMILES-based encodings to sophisticated graph and latent space representations. Several notable 

implementations illustrate this progression, each addressing specific challenges in de novo molecular design. 

MolEvol represents one of the earliest GA-based molecular design frameworks, relying on SMILES string 

encodings to explore chemical space (Brown et al., 2019). Its optimization objectives included binding affinity 

and drug-likeness quantified by the Quantitative Estimate of Drug-likeness (QED), while operators such as 

fragment-based crossover and mutations were employed to preserve chemical validity. Despite its simplicity, 

MolEvol demonstrated the feasibility of evolutionary search in chemical space. 

 

In contrast, JANUS introduced a graph-based encoding scheme that enabled a more chemically intuitive 

representation of molecules (Nigam et al., 2021). By incorporating adaptive crossover and mutation strategies, 

JANUS efficiently balanced multiple objectives such as potency, solubility, and toxicity. This multi-objective 

optimization framework addressed the inherent trade-offs in drug design, showcasing the power of GAs in 

multi-criteria decision-making. 

 

MolGA further refined graph-based representations by implementing graph crossover and edge mutation 

operators tailored to molecular structures (Zhou et al., 2019). This design ensured that generated molecules 

adhered to chemical validity constraints while maintaining high diversity. MolGA’s emphasis on 

synthesizability and drug-likeness marked an important step toward practical drug discovery applications. 
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The integration of genetic algorithms with deep generative models is exemplified by DEFactor, which leveraged 

latent space embeddings as an encoding scheme (Assouel et al., 2018). In this approach, crossover operations 

were performed in the learned latent space, enabling smooth exploration of molecular manifolds. This 

hybridization of GAs with deep learning allowed optimization based on docking scores and QED, bridging 

symbolic evolutionary search with representation learning. 

 

Finally, Hybrid GA-ML approaches combined graph embeddings with machine learning predictors to optimize 

pharmacokinetic and toxicological endpoints (Stahl et al., 2022). By reinforcing crossover and guiding 

mutations with predictive models, these methods reduced the computational cost associated with expensive 

molecular evaluations such as docking or quantum chemistry. Such hybrid frameworks exemplify the shift 

toward efficiency-driven GA implementations in modern drug discovery pipelines. 

 

Overall, these implementations highlight the adaptability of genetic algorithms to various molecular 

representations and optimization objectives. From string-based encodings to latent space manipulations, GAs 

continue to provide a versatile search paradigm for balancing the competing objectives of potency, safety, and 

synthesizability in drug discovery. 

 

 

Limitations and Challenges 
 

Although evolutionary methods bring transparency and multi-objective capability, they face several challenges 

in practice: 

• Computational Cost: Populations and many generations require large numbers of fitness evaluations; 

expensive physics-based or experimental scoring limits throughput. Surrogate models and active 

sampling have been proposed to mitigate this cost, but they introduce model-bias risks (Nigam et al., 

2020; Stahl et al., 2022). 

• Validity vs. Novelty Trade-off: Aggressive mutation and crossover increase novelty but often yield 

chemically invalid or synthetically infeasible molecules. Balancing exploration and exploitation is 

therefore nontrivial. Fragment-aware encodings and chemically valid operators help reduce invalid 

candidates but do not eliminate the problem entirely (Brown et al., 2019; Yoshimori et al., 2021). 

• Objective Modeling Errors: Machine learning surrogates can misrank candidates, and noisy 

predictors may drive premature convergence toward artifacts. Robust uncertainty quantification and 

multi-fidelity evaluation pipelines are recommended (Vamathevan et al., 2019; Schneider et al., 2020). 

• Scalability to Many Objectives: Many-objective optimization (>4–5 objectives) complicates Pareto 

selection and diversity maintenance. Specialized algorithms such as NSGA-II or decomposition-based 

methods like MOEA/D have been adapted to molecular discovery to address this issue (Deb et al., 

2002; Zhang & Li, 2007; Ishibuchi et al., 2016). 

• Integration with Wet-Lab Workflows: Translating evolutionary outputs into synthesizable, testable 

molecules requires retrosynthetic planning, procurement considerations, and assay translation areas 

where further automation and standardization are needed (Segler et al., 2018; Zhavoronkov et al., 

2019). 

 

Overall, evolutionary optimization remains a powerful and interpretable approach for multi-objective molecular 

design, particularly when combined with modern graph representations, fragment-aware operators, and 

surrogate models. The trend in recent literature is toward hybrid pipelines that combine the generative power of 

deep models with the explicit search and control offered by evolutionary algorithms, yielding pragmatic systems 

capable of producing chemically plausible, multi-objective-optimized candidates at scale (Gómez-Bombarelli et 

al., 2018; Nigam et al., 2021). 

 

 

Synergizing Generative Models with Evolutionary Algorithms 
 

Complementary Strengths of the Two Paradigms 

 

Generative models and evolutionary algorithms (EAs) offer distinct yet complementary advantages for 

molecular design (refer to Table 3). Generative models, such as variational autoencoders (Kingma & Welling, 

2014; Gómez-Bombarelli et al., 2018), generative adversarial networks (Goodfellow et al., 2014; Kadurin et al., 

2017; Guimaraes et al., 2017), and reinforcement learning–based graph models (Olivecrona et al., 2017; You et 

al., 2018; Shi et al., 2020), excel at capturing the complex distribution of chemical space and generating novel 



International Conference on Technology, Engineering and Science (IConTES), November 12-15, 2025, Antalya/Türkiye 

520 

 

structures. However, these models may suffer from biases introduced by training data and may not directly 

optimize multiple drug-relevant objectives (Schneider, 2018; Zhong et al., 2019). 

 

In contrast, evolutionary algorithms, particularly multi-objective methods such as NSGA-II (Deb et al., 2002) 

and MOEA/D (Zhang & Li, 2007), are inherently suited for balancing competing objectives like potency, 

solubility, and toxicity (Nigam et al., 2021). EAs provide explicit control over diversity maintenance and can 

incorporate chemically valid crossover and mutation operators (Yoshimori et al., 2021). By combining these 

paradigms, generative models can propose diverse and syntactically valid candidates, while EAs refine and 

optimize them in accordance with medicinal chemistry constraints. Table 3 highlights the complementarity of 

generative models and genetic algorithms: 

 

Table 3: Comparative analysis of deep generative models vs. evolutionary algorithms in molecular design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hybrid framework 

 

Hybrid frameworks aim to leverage the expressive generation capabilities of deep models with the robust search 

and optimization of evolutionary algorithms. One common strategy is to embed molecules in continuous latent 

spaces learned by autoencoders or graph neural networks (Blaschke et al., 2020; Winter et al., 2019), where 

genetic operators such as crossover and mutation can be applied more smoothly (Assouel et al., 2018). Another 

approach integrates reinforcement learning–based generative models with EA-driven population management, 

ensuring balance between exploration and exploitation (Nigam et al., 2020; Stahl et al., 2022). 

 

Such frameworks allow iterative interplay: generative models explore wide areas of chemical space, while 

evolutionary operators guide optimization toward Pareto-optimal sets with respect to pharmacokinetics, toxicity, 

and synthetic accessibility (Ishibuchi et al., 2016; Schneider et al., 2020). This synergy directly addresses the 

limitations of purely generative approaches, particularly in multi-objective settings where trade-offs are 

unavoidable. 

 

 

Case Studies and Benchmarks 

 

Several implementations exemplify the synergy between generative and evolutionary paradigms (refer to Figure 

3) . The JANUS framework employs a parallel-tempered genetic algorithm guided by neural networks, enabling 

efficient multi-objective optimization of drug-like molecules (Nigam et al., 2021; Nigam et al., 2022). 

STONED, based on the SELFIES molecular representation, achieves rapid traversal and exploration of chemical 

space, demonstrating the effectiveness of EA-guided search without the need for large-scale training (Nigam, 

Pollice et al., 2022). 

 

Benchmarking platforms such as GuacaMol (Brown et al., 2019) and comparative studies (Polishchuk et al., 

2013) provide standardized metrics for evaluating generative-EA hybrids across objectives like quantitative 

estimate of drug-likeness (QED), binding affinity, and synthesizability. These studies confirm that hybrid 

methods often outperform standalone generative models or purely evolutionary searches in terms of chemical 

validity, novelty, and multi-objective performance. Figure 2 illustrates a typical workflow for hybrid 

generative–evolutionary drug design begins with a generative model trained on large chemical datasets (Gómez-

Bombarelli et al., 2018; Gilmer et al., 2017). Candidate molecules generated in SMILES or graph form are 

Criterion Deep Generative 

Models 

Evolutionary 

Algorithms 

Benchmark 

References 

Validity 

70–99% 

(SELFIES: 

>99.9%) 

100% (fragment 

constraints) 

Krenn et al. 

(2020); Segler et 

al. (2018) 

Synthesizability (S

A score ≤4) 
15–40% 75–92% 

Gao & Coley 

(2020); Nigam et 

al. (2019) 

Novelty (Tanimoto

<0.4) 
80–95% 45–70% 

Brown et al. 

(2019); You et al. 

(2018) 

Multi-Objective 

Support 

Limited by 

reward design 

Native 

integration via 

fitness 

Li et al. (2018); 

Steinmann & 

Jensen (2021) 
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passed to an evolutionary optimization layer, where crossover, mutation, and selection are applied under multi-

objective constraints (Deb et al., 2002; Li & Zhang, 2009). Feedback from predictive models (Vamathevan et 

al., 2019; Zhavoronkov et al., 2019) or docking simulations (Zhou et al., 2019) is used to update both the 

evolutionary fitness functions and the generative model parameters. Figure 3 illustrates the synergy between 

generative models and evolutionary systems for multi-objective molecular design: 

 
Figure 3. Workflow of hybrid generative–evolutionary frameworks for multi-objective molecular design 

 

 

Future Directions 
 

The convergence of generative modeling and evolutionary optimization is still at an early stage, and several 

avenues remain open for advancing the field. 
 

 

Dynamic Multi-Objective Penalties 

 

Traditional multi-objective optimization often treats all objectives with static weights or Pareto dominance. 

However, drug discovery objectives such as potency, selectivity, and pharmacokinetic properties, rarely remain 

fixed throughout a project’s lifecycle. Dynamic penalty schemes, in which weights adapt based on progress or 

project stage, could enable more pragmatic optimization. Such adaptive formulations would allow algorithms to 

progressively shift emphasis from chemical diversity toward synthesis feasibility and clinical relevance (Deb et 

al., 2002; Li & Zhang, 2009). 

 

 

Integration with Reinforcement Learning 

 

While evolutionary algorithms excel in population-based exploration, reinforcement learning (RL) methods 

provide fine-grained control over sequential molecular construction (Olivecrona et al., 2017; Zhou et al., 2019). 

Combining these paradigms could yield synergistic frameworks where RL policies guide local exploration, 

while evolutionary operators maintain population-level diversity and multi-objective balance. Such 

hybridization is especially promising for tasks requiring long-horizon credit assignment, such as scaffold 

hopping or synthesizability-aware optimization. 

 

 

Towards Fully Automated, Closed-Loop Drug Discovery Pipelines 

 

The ultimate goal of this research trajectory is to achieve autonomous design–make–test–analyze (DMTA) 

cycles (Schneider, 2018; Segler et al., 2018). Closing the loop between in silico design, robotic synthesis, and 

high-throughput screening will require robust interfacing of generative–evolutionary models with retrosynthetic 

planning engines (Segler et al., 2018) and laboratory automation platforms. Active learning and uncertainty-

aware surrogate models (Vamathevan et al., 2019) will be critical for prioritizing experiments and reducing 

costs in these pipelines. Progress in this direction could enable self-driving laboratories that iteratively refine 

molecular candidates with minimal human intervention, accelerating the path from hypothesis to validated lead. 
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Our Contributions to AI-Driven Drug Discovery 
 

Over the three past years, our research group has made several contributions to the rapidly evolving field of AI-

driven drug discovery. Building on the synergy between deep generative models and evolutionary optimization, 

we have focused on developing deep generative and hybrid frameworks that combine data-driven molecular 

generation with multi-objective search strategies. These efforts aim to accelerate de novo molecular design, 

improve chemical validity, and enhance the interpretability of AI-assisted drug development. 

 

Our first contribution Oulladji et al., 2025, explores the use of artificial intelligence and machine learning 

techniques in the drug discovery process, focusing on how data-driven models can accelerate target 

identification, molecular design, and compound optimization. The study highlights the importance of predictive 

modeling, deep learning, and virtual screening in reducing cost and time in drug development. Finally, it 

emphasizes future directions toward automated and intelligent drug design pipelines. Second research, Taieb 

Brahim et al., currently under peer review, proposes a hybrid framework that integrates a Variational 

Autoencoder (VAE) to generate diverse anticancer molecular structures and a multi-objective Genetic 

Algorithm to optimize them. The optimization process simultaneously targets predicted anticancer activity 

(GCN), drug-likeness (QED), synthetic accessibility (SA), and Lipinski compliance. Overall, the proposed 

approach efficiently explores chemical space and identifies promising, realistic, and synthesizable drug 

candidates. 

 

Finally, our current contribution, Abbad et al., investigates the integration of deep generative models with a dual 

optimization strategy leveraging Genetic Algorithms (GA) and the Colibri algorithm. The generative model 

provides diverse initial molecular candidates, while the GA–Colibri optimization jointly refines them with 

respect to predicted bioactivity, drug-likeness, synthetic accessibility, and pharmacokinetic constraints. The 

designed approach accelerates de novo molecule discovery while maintaining a balance between potency, 

feasibility, and developability. Together, these contributions illustrate our commitment to advancing the 

intersection of artificial intelligence, cheminformatics, and computational drug design, paving the way toward 

more efficient, interpretable, and autonomous discovery workflows.  

 

 

Conclusion 

 
The integration of generative models with evolutionary algorithms is reshaping molecular design by uniting 

data-driven creativity with interpretable, multi-objective optimization. Emerging hybrid frameworks not only 

enhance chemical validity and synthesizability but also pave the way toward autonomous, closed-loop discovery 

pipelines. As adaptive optimization strategies and reinforcement learning integration mature, these approaches 

hold the potential to accelerate drug discovery dramatically, bridging the gap between theoretical innovation and 

tangible therapeutic breakthroughs. Ultimately, hybrid generative–evolutionary frameworks may enable the 

transition from exploratory molecular design to truly autonomous drug discovery. 
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