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Abstract: The tests on fracture mechanics of quasi-brittle materials until the 1970s indicated that linear elastic 

fracture mechanics (LEFM) was not valid for cement-based materials such as mortar and concrete. This 

inapplicability of LEFM is due to the existence of an inelastic zone, which is also so-called fracture process. 

Therefore, numerous non-Hookean fracture models have been introduced to evaluate fracture quantities in 

quasi-brittle materials. According to the two-parameter model (TPM) in concrete fracture, a free crack 

propagates unstably whenever the stress intensity factor and the crack tip opening displacement are equal to 

their threshold values, such as Mode I fracture toughness and critical crack tip opening displacement, 

respectively. In this study, beams, cubes and square prismatic specimens with three different initial crack 

lengths were produced to calculate fracture quantities of lime-pumice mixtures. Beams with a maximum 

aggregate diameter (g) of 4 mm were kept in the mold for 28 days while cubes with g=4 mm and square 

prismatic specimens with g=16 mm were saved in the mold for 90 days. The fracture quantities of the mixtures 

were evaluated by employing the modified peak load method, which was recently derived to determine fracture 

properties of TPM.     
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Introduction 

 

The first attempt to apply Linear Elastic Fracture Mechanics (LEFM) to cement-based composites was 

conducted by Kaplan (1961) and later expanded upon by Kesler et al. (1972). Their work revealed that LEFM 

does not adequately capture the fracture response of concrete. This limitation stems from the presence of a 

relatively large inelastic zone ahead of the crack tip in quasi-brittle materials such as concrete mixtures, rocks, 

and asphalt concrete. To address this shortcoming, several nonlinear fracture mechanics models have been 

introduced to more realistically describe fracture-governed failures in concrete. Among these are the fictitious 

crack model of Hillerborg et al. (1976), the crack band model proposed by Bazant and Oh (1983), the two-

parameter model (TPM) by Jenq and Shah (1985), the effective crack model of Nallathambi and Karihaloo 

(1986), the size effect model (SEM) introduced by Bazant and Kazemi (1990), the double-K model developed 

by Xu and Reinhardt (1999), and the boundary effect method by Hu and Duan (2008). 

 

Roman mortars represent the earliest form of concrete, composed of lime, water, sand, and volcanic tuff, 

facilitating the creation of edifices that have endured for almost two thousand years, with notable instances 

including the Pantheon temple and the Colosseum. The Pantheon temple continues to function as an exhibition 

hall today. The Colosseum suffered significant damage due to a catastrophic earthquake in 412 AD. Previously, 

during the period when Rome embraced Christianity, numerous valuable stone fragments were incorporated into 

the construction of various other buildings. Currently, one-third of the Colosseum remains, predominantly 

consisting of its concrete structure. Conversely, in Seljuk and Ottoman architectural styles, a substantial number 
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of buildings constructed with Khorasan mortar-comprising lime, sand, water, and ground-baked clay (brick) 

have persisted to the present day. 

 

In this research, beams, cubes, and square prismatic specimens featuring three distinct initial crack lengths were 

created to assess the fracture characteristics of lime-pumice mixtures. Beams with a maximum aggregate 

diameter (g) of 4 mm were maintained in the mold for a duration of 28 days, whereas cubes with g=4 mm and 

square prismatic specimens with g=16 mm were retained in the mold for 90 days. The fracture characteristics of 

the mixtures were analyzed using the modified peak load method, which has been recently developed to 

evaluate the fracture properties of TPM. 

 

 

The Two-Parameter Model (TPM) in Concrete Fracture 

 
During the 1970s, experimental investigations into the fracture behavior of cement-based composites—

including paste, mortar, and concrete—indicated that the traditional framework of Linear Elastic Fracture 

Mechanics (LEFM) could not adequately represent quasi-brittle materials (Kesler et al., 1972). The primary 

limitation originates from the formation of a relatively large inelastic region, referred to as the fracture process 

zone (FPZ), which develops in front of and surrounding major crack tips. To address this issue, several 

nonlinear fracture mechanics models have been introduced to more accurately describe the FPZ. 

 

These approaches are generally classified into cohesive crack models and effective crack models, one notable 

example being the two-parameter fracture model (TPM) proposed by Jenq and Shah (1985). The fundamental 

objective of these models is to evaluate the critical crack extension, expressed as Δa = ac − a0, where ac denotes 

the crack length at peak load and a0 represents the initial notch length. This parameter is typically obtained from 

either the load–displacement curve or the load–crack mouth opening displacement relationship of the tested 

structure. 

 

According to the Two-Parameter Model (TPM), fracture in a concrete structure occurs when the stress intensity 

factor (KI) and the crack tip opening displacement (CTOD) both attain their corresponding critical thresholds, 

denoted as Ks
Ic and CTODc. These characteristic fracture parameters can be evaluated using the following 

formulations derived from Linear Elastic Fracture Mechanics (LEFM): 

 

( ),s
K a Y g lcIc Nc =           (1) 

( ) ( ), ,
1

acNcCTOD V g l M g lc
E


=         (2) 

 

Here, σNc denotes the nominal failure stress, E represents Young’s modulus, and Y, V1, and M are dimensionless 

parameters that are functions of both the structural geometry (g) and the loading configuration (l). In Eq. (2), the 

coefficient γ takes the value of π for splitting specimens and 4 for beams. The term Y is commonly referred to as 

the geometry factor, while M is obtained from the ratio COD(ac)/CMODc, where CMODc corresponds to the 

critical crack mouth opening displacement. The TPM is particularly convenient for structural applications, since 

the functions Y, V1, and M can be readily found in Linear Elastic Fracture Mechanics (LEFM) reference 

handbooks (Tada et al., 2000). 

 

In the two-parameter model (TPM), fracture properties can be evaluated using two main experimental 

procedures: the compliance method, first proposed by Jenq and Shah (1985), and the peak-load method, later 

developed by Tang et al. (1996). The compliance approach determines the parameters from the correlation 

between the applied load and the crack mouth opening displacement (P–CMOD) obtained from a three-point 

bending specimen of width b, depth d, and span S. This procedure requires a closed-loop testing system, as 

schematically shown in Figure 1a. Within TPM, the critical crack length (ac) is calculated from the unloading 

compliance (Cu) measured at 95% of the maximum load, as illustrated in Figure 1b. 

 

The peak-load method, in contrast, eliminates the need for sophisticated closed-loop equipment and thus 

provides a simpler alternative to the RILEM compliance-based procedure for calculating fracture parameters in 

TPM. Nevertheless, this approach still requires a minimum of three specimens to account for the variability 

inherent in concrete. The test specimens may either share identical geometrical dimensions but differ in their 

initial notch lengths, or they may exhibit consistent notch sizes while varying in overall dimensions. For each 

individual specimen, the governing equations of TPM can be expressed as formulated by Tang et al. (1992). 
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Figure 1. Modeling based on TPM a) notched beam b) typical load-CMOD curve 
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here i denotes the ith specimen. Consequently, the fracture parameters can be found by simultaneously solving 

four non-linear equations. However, three or more distinct specimens must be tested to ensure statistically valid 

results because random errors always exist in measured values of 
Nc and 

Nc. 

 

Ince (2025a) was recently developed the modified peak load method based on an optimization procedure to 

calculate Ks
Ic and CTODc. This approach is based on the simultaneous solution of equation (3) as the failure 

criterion of a concrete structure. As mentioned above, the main aim of any fracture model is to evaluate the 

critical crack extension (a) at the peak load. Accordingly, for this problem, it may be sufficient to find the 

nominal strength value (Nc) corresponding to the peak load and the a value for the initial crack length (a0) for 

each sample. These a values calculated for each sample should be such that the same fracture parameters (Ks
Ic 

and CTODc) are met for all tested samples. However, it is impossible to obtain an exact solution for a 

heterogeneous material like concrete. Consequently, such a problem can only be approached using optimization 

techniques. To find the fracture parameters of TPM, the following two expressions were initially minimized by 

utilizing the least squares error criterion: 

 

( ) ( ) ( )2
2

, ,1 1

n ns s s s
f K K K KIc Ic Ic i Ic ii i

 == − 
= =

       (4) 
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Here n is the number of samples tested, 
,
s

K
Ic i

 is the average value of Ks
Ic and Ks

Ic,i is the value of Ks
Ic or the ith 

sample in Equation 4 while ,CTODc i  is the average value of CTODc and CTODci is the value of CTODc for the 

ith sample in Equation 5. On the other hand, to provide the simultaneous solution of the above two minimization 

equations, the root sum squared (RSS) method, which is also called the statistical tolerance analysis method, 

was used as follows: 

 

( ) ( )( )
2 2sRSS f K f CTODcIc

 
 
 

= +         (6) 

 

Note that although, in practice, Ks
Ic and CTODc are commonly used in terms of MPa√m and mm, respectively, it 

is recommended to choose MPa√mm and m because the quantities in these units are very different from each 

other. The procedures described above, which form the basis of the modified peak load method, can be easily 

implemented using a spreadsheet-based program such as the MS-EXCEL-based SOLVER toolkit.  
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Fracture test specimens such as beams (Figure 1a), notched split tension cylinders/cubes (Figure 2a), compact 

compression specimens (Figure 2b), wedge-splitting specimens (Figure 2c), cube with edge notch (Figure 2d) 

and semi-circular bending (SCB) specimens (Figure 2e) can be employed in the peak-load method, only beams 

are initially used in the compliance method proposed by RILEM. However, the SCB specimens were recently 

used to analyze rock materials by Ince (2025b) according to the compliance method. 

 

 
Figure 2. Compact specimens used in concrete fracture a) splitting specimens b) compact compression 

specimens c) wedge spitting specimens d) cube with edge notch e) semi-circular bending specimens  

 

 

Experimental Program 
 

The mixtures with a maximum aggregate diameter of 4 mm were in a water: lime: pumice: aggregate ratio of 

1.53:1.00:1.00:6.00, while the mixture with a maximum aggregate diameter of 16 mm were in a water: lime: 

pumice: aggregate ratio of 1.42:1.00:1.00:6.00. CL-80-S lime with the specific gravity=2.08 was used in the 

mixture with beams while CL-90-S lime with the specific gravity=2.09 was employed in the other mixtures. The 

aggregates were air-dried prior to mixing. The Fuller parabola was used to determine the percentages of the 

aggregate gradation. 

 

The widths of all the beams with a maximum aggregate diameter of 4 mm were taken as constant, b =50 mm. 

The lengths of beams were taken as L=3d (Figure 1a). The cubes with 100 mm were used for the mixtures with 

a maximum aggregate diameter of 4 mm. The square prisms were designed as 100×150×150 mm for mixtures 

with a maximum aggregate diameter of 16 mm. All beams were kept in the mold for 28 days, while the cubes 

and the square prisms were saved in the mold for 90 days. All specimens were wrapped in stretch film. The 

specimens were notched with a diamond saw blade of 1.5 mm thickness on the day of the fracture test. In 

addition to the notched specimens, cubes (100 mm) were made to determine compressive strength. While beams 

of the same dimensions were used to determine the flexural strength of the beams, 100 mm cubes were made to 

determine the splitting strength of the other specimen configurations.  

 

The compression tests, the splitting tests and the bending tests were performed using a digital compression 

machine with a capacity of 100 kN. The specimens were loaded monotonically until final failure and care was 

taken to apply a constant loading rate (Figure 3). Typically, approximately 2 min (± 30 sec) elapsed before the 

maximum load capacity for each specimen was reached.  
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Figure 3. Test setup of the notched specimens 

 

In this study, by using the following formulas, the dynamic Young’s moduli of the materials were determined 

by means of the ultrasonic technique for prismatic specimens and cubical specimens, respectively: 

 

3 2
10 , MPa

d
E V=              (7) 

 

( ) ( )2
1 1 23

10 , MPa
1d

V
E

 



 + −
=

−
          (8) 

 

where, V is the velocity (km/s) and  is the unit weight (kg/lt). Since lime-pumice mixtures are low strength 

materials, the Poisson ratio (v) was taken as 0.3 in this study (Erdogan, 2003). Note that the dynamic Young’s 

moduli of materials (Ed) are larger than static Young’s moduli (Es). The formula: Es=6/7×Ed was used for lime-

pumice mixtures in this study (Lydon, 1972). Physical and mechanical properties of lime-pumice mixtures used 

in this study are summarized in Table 1.  

 

The specimen width (b), specimen depth (d) and the peak load values (Pc) of the notched beams are reported in 

Table 2 according to the notch depths (a0). The values of a0 and Pc of the splitting specimens: cubes and square 

prisms are summarized in Table 3. In these tables, the letters B, C, and SP refer to beams, cubes, and square 

prism specimens. 

 

Crack patterns at the failure of beams and compression cubes are shown in Figure 4. The specimen width (b), 

specimen depth (d) and the peak load values (Pc) of the notched beams were reported in Tables 1 according to 

the notch depths (a0).  

 

 

Applications of the Modified Peak Load Method to Lime-Pumice Mixtures 
 

Tables 4, 5, and 6 illustrate the applications of the modified peak load method to mixtures in this study. The test 

data are summarized for each sample in the first two columns of these tables. In these tables, the nominal 

strengths were computed as Nc=3.75P/(b×d) and Nc=P/(×b×d) for beams and splitting specimens, 

respectively. For each sample, the crack extensions (a), which were taken as variables of the optimization 

problem, were initially selected as 5 mm. The normalized functions of the cracked structure, such as Y and V1, 

were also summarized while the function of M in Equation 2 is presented as embedded in CTODc. All analysis 

was conducted by using the MS-EXCEL-based SOLVER toolkit. The root sum squared (RSS) values in these 

tables are the minimized values.  

 

Table 1. Physical and mechanical properties of lime-pumice mixtures used in this study 

Mix g w/b  T fc 

MPa 

ft 

MPa 

fsp 

MPa 

Es 

MPa 

 

mm  g/cm3 Days  

M4-28 4 0.77 1.93 28 3.79 1.181 - 13384  

M4-90 4 0.77 2.01 90 9.82 - 1.300 14216  

M16-90 16 0.71 2.09 90 10.82 - 1.305 20382  
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Table 2. Test results of beams tested in this study 

Specimen 

  

b 

mm 

d 

mm 

a0 

mm 

Pc 

N 

B1 47.77 49.32 8.84 540 

B2 50.85 50.3 9.99 460 

B3 54.16 49.63 9.71 590 

B4 50.41 50.23 9.36 680 

B5 52.08 50.41 9.93 520 

B6 53.65 50.03 15.00 350 

B7 54.26 49.84 14.26 490 

B8 49.26 50.05 13.58 410 

B9 52.21 51.28 15.79 460 

B10 52.32 50.72 15.42 450 

B11 48.02 49.63 23.12 290 

B12 50.32 49.17 21.84 250 

B13 55.85 49.21 21.43 320 

 

Table 3. Test results of cubes (C) and square spasmatic (SP) tested in this study 

Specimen 

  

a0 

mm 

Pc 

kN 

Specimen 

 

a0 

mm 

Pc 

kN 

C1 29.35 17.65 SP1 27.89 50.28 

C2 28.5 23.51 SP2 28.45 48.14 

C3 29.52 16.44 SP3 28.37 48.81 

C4 39.91 14.9 SP4 46.25 39.87 

C5 39.32 12.56 SP5 47.86 41.10 

C6 40.07 12.18 SP6 45.15 44.22 

C7 47.38 11.61 SP7 65.37 27.70 

C8 47.91 10.16 SP8 65.7 16.75 

C9 48.57 9.02 SP9 65.66 18.03 

 

The following formulas were applied to beams with a span/depth ratio of 2.5 in this study (Yang et al., 1997): 

 

( )
( )( )

2 3 4
1.83 1.65 4.76 5.3 2.51

3
21 2 1

Y
   


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− + − +
=

+ −

        (9) 
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0.682 3
0.65 1.88 3.02 2.69

1 2
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−

         (10) 

 

( ) ( )
2 2

0 0 0, 1 1.081 1.149
0

M c c
c c c
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= − + − −

    
    
     

     (11) 

 

For the cube and the square prismatic specimens subjected to splitting loading used in Table 2, the LEFM 

formulas are given by (Ince, 2021): 

 

( ) 2 3
0.3691 0.4492 1.3284 2.4467 for =0.1Y     = + + +      (12) 

 

( ) 2 3
0.3341 0.0101 2.5609 0.4067 for =0.2Y     = + + +      (13) 

 

( )1
2 3

0.3722 2.0219 6.6125 14.3038 for =0.1V     = + − +      (14) 

 

( )1
2 3

0.3040 1.7717 5.3749 12.2420 for =0.2V     = + − +      (15) 
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( ) ( ) 0.23 3.67
1

2 1.15 2

0 0 0 0, 1 2.16 4.02
0 c

M c c
c c c c

 
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  
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−
−= − + − −

        
        
           

  (16) 

 

 
Figure 4. Fractured specimens 
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Table 4. Application of the modified peak load method to beams with g=4 mm 

No a0 

mm 
Nc 

MPa 

a 

mm 

ac 

mm 

ac/d Y Ks
Ic 

MPa√mm 

V1 CTODc 

m 

 2(Ks
Ic) 2(CTODc) 

 

1 8.84 0.860 4.68 13.52 0.274 0.967 5.41 1.559 2.931  0.0012 0.0008 

2 9.99 0.674 6.59 16.58 0.330 1.018 4.95 1.731 3.302  0.1807 0.1171 

3 9.71 0.823 4.65 14.36 0.289 0.979 5.41 1.601 2.934  0.0010 0.0007 

4 9.36 1.007 2.99 12.35 0.246 0.949 5.95 1.491 2.509  0.3260 0.2029 

5 9.93 0.743 5.62 15.55 0.309 0.996 5.17 1.659 3.129  0.0435 0.0286 

6 15.00 0.489 6.87 21.87 0.437 1.188 4.82 2.263 3.417  0.3170 0.2093 

7 14.26 0.679 4.11 18.37 0.369 1.068 5.51 1.888 2.853  0.0173 0.0113 

8 13.58 0.624 5.31 18.89 0.377 1.081 5.19 1.929 3.112  0.0348 0.0231 

9 15.79 0.644 3.96 19.75 0.385 1.093 5.55 1.966 2.826  0.0283 0.0180 

10 15.42 0.636 4.21 19.63 0.387 1.096 5.47 1.975 2.885  0.0086 0.0056 

11 23.12 0.456 2.80 25.92 0.522 1.420 5.85 3.001 2.558  0.2182 0.1617 

12 21.84 0.379 4.87 26.71 0.543 1.495 5.19 3.251 3.129  0.0361 0.0285 

13 21.43 0.437 3.97 25.40 0.516 1.398 5.45 2.932 2.894  0.0056 0.0043 

      Mean 5.38 Mean 2.96  1.2184 0.8119 

           RSS 1.44641 

 

Table 5. Application of the modified peak load method to cubes with g=4 mm 

No a0 

mm 
Nc 

MPa 

a 

mm 

ac 

mm 

ac/d Y Ks
Ic 

MPa√mm 

V1 CTODc 

m 

 2(Ks
Ic) 2(CTODc) 

 

1 29.35 0.562 12.04 41.39 0.414 0.956 6.13 1.176 4.31  0.0258 0.0232 

2 28.50 0.748 8.00 36.50 0.365 0.829 6.64 0.990 3.80  0.1277 0.1240 

3 29.52 0.523 13.11 42.63 0.426 0.992 6.00 1.232 4.42  0.0797 0.0689 

4 39.91 0.474 7.45 47.36 0.474 1.140 6.59 1.480 3.90  0.0934 0.0641 

5 39.32 0.400 10.42 49.74 0.497 1.222 6.11 1.629 4.30  0.0321 0.0218 

6 40.07 0.388 10.39 50.46 0.505 1.248 6.09 1.678 4.31  0.0373 0.0248 

7 47.38 0.370 6.58 53.96 0.540 1.383 6.65 1.937 3.88  0.1341 0.0756 

8 47.91 0.323 8.16 56.07 0.561 1.470 6.31 2.114 4.14  0.0005 0.0003 

9 48.57 0.287 9.55 58.12 0.581 1.559 6.05 2.300 4.33  0.0561 0.0315 

      Mean 6.29 Mean 4.16  0.5868 0.4343 

           RSS 0.7300 

 

Table 6. Application of the modified peak load method to square prisms with g=16 mm 

No a0 

mm 
Nc 

MPa 

a 

mm 

ac 

mm 

ac/d Y Ks
Ic 

MPa√mm 

V1 CTODc 

m 

 2(Ks
Ic) 2(CTODc) 

 

1 27.89 1.067 18.42 46.31 0.309 0.593 7.63 0.699 4.35  0.0448 0.0726 

2 28.45 1.022 19.13 47.58 0.317 0.608 7.59 0.716 4.40  0.0639 0.1013 

3 28.37 1.036 18.82 47.19 0.315 0.603 7.61 0.711 4.38  0.0557 0.0888 

4 46.25 0.846 10.37 56.62 0.377 0.725 8.18 0.865 3.74  0.1084 0.1170 

5 47.86 0.872 8.62 56.48 0.377 0.723 8.40 0.863 3.53  0.3034 0.3053 

6 45.15 0.938 8.72 53.87 0.359 0.687 8.39 0.814 3.52  0.2906 0.3109 

7 65.37 0.588 6.79 72.16 0.481 0.977 8.64 1.275 3.45  0.6367 0.4024 

8 65.70 0.356 18.14 83.84 0.559 1.211 6.99 1.753 4.76  0.7399 0.4566 

9 65.66 0.383 16.33 81.99 0.547 1.171 7.19 1.666 4.61  0.4304 0.2757 

      Mean 7.85 Mean 4.08  2.6738 2.1307 

           RSS 3.4190 

 

 

Conclusion  
 

This study employed the modified peak load method based on the two-parameter model in concrete fracture to 

examine the fracture behavior of lime-pumice mixtures. The key findings are summarized below: 

 

The fracture toughness value of the lime-pumice mortar is around 1/5 compared to normal cementitious mortars 

in 28 days test. Moreover, the resistance of this material to crack propagation is much lower than normal 

cement-based ones. The fracture toughness value of 90-day mortar is approximately 20% greater than that of 28-

day mortar. On the other hand, the crack tip opening displacement value of 90-day mortar is approximately 30% 
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greater than that of 28-day mortar. The fracture toughness value of the lime-pumice mixture with the maximum 

aggregate size=16 mm is approximately 25% greater than that of the lime-pumice mixture with the maximum 

aggregate size=4 mm while no significant difference is observed between the crack tip opening displacement 

values. 

 

 

Recommendations 

 

Further studies can come up with more reliable results by investigating various types and sizes of aggregates to 

verify the above findings. 
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