Modeling Crashes Severity Using Ensemble Techniques
DOI:
https://doi.org/10.55549/epstem.1410227Keywords:
Machine learning, K-nearest neighborhood, Support vector machine, Safety, Driver age, driver faultAbstract
Traffic crashes are modelled using different techniques and contributing factors. In this work, several ensemble machine learning algorithms were used to model crash severity at urban roundabouts using data from 15 roundabouts in Jordan. The original dataset covers four years, from 2017 to 2021. A total of 15 variables were collected and used in this work. Results indicated that ten variables are important. The various models show their ability to classify traffic crash severity with a high overall accuracy range from 96% to 98%. Results indicated that driver fault and age are the most significant contributing factors for crash severity.Downloads
Published
2023-12-30
Issue
Section
Articles
How to Cite
Modeling Crashes Severity Using Ensemble Techniques. (2023). The Eurasia Proceedings of Science, Technology, Engineering and Mathematics, 26, 357-365. https://doi.org/10.55549/epstem.1410227


